基于有序聚类法的土壤水分剖面划分

王信增1,焦 峰1,2

(1 西北农林科技大学 资源环境学院,陕西 杨凌 712100;2 中国科学院 水利部 水土保持研究所,陕西 杨凌 712100)

[摘 要] 【目的】研究有序聚类法在土壤水分剖面划分中的应用。【方法】在黄土高原丘陵区陕西省安塞县, 以乔木林地、灌木林地、果园用地和天然草地等4种土地利用类型为研究对象,测定4种用地类型0~500 cm 土层(每 20 cm 为1层,共25层)的土壤水分含量,然后采用有序聚类法对4种土地利用类型土壤水分剖面进行分层。【结果】 从专业角度无法确定最优分类数K时,可以利用碎石图来确定,对全部样本进行分类并作碎石图可知,当K=4时, 有序分割达到最优;对土地利用类型而言,土壤水分剖面总体可划分为水分弱利用层、根系集中层、强烈耗水层、水分 调节层等4层,中间2层又可简单地归结为土壤水分利用层。【结论】基于有序聚类法划分的土壤水分剖面分层结果 符合黄土高原丘陵沟壑区的土壤水分垂直分布实际,表明了该分层方法的合理性。

[关键词] 黄土丘陵区;有序分类法;土壤水分;分层

[中图分类号] S152.7 [文献标识码] A [文章编号] 1671-9387(2011)02-0191-06

Partition of soil moisture profiles based on sequential clustering method

WANG Xin-zeng¹, JIAO Feng^{1,2}

(1 College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; 2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China)

Abstract: [Objective] The research was conducted to study the application of sequential clustering method in the vertical profiles of soil moisture classification. [Method] In the hilly Loess Plateau of Ansa Shaanxi, the research object was 4 land-use types such as tree land, shrub land, orchard and grassland land use types. The soil water profile of 4 land-use types was classified by the orderly clustering method according to the water content of 0-500 cm(every 20 cm for 1 layer, altogether 25 layer). [Result] When K values cannot be predicted from the angle of profession, it can be fixed by the stone graph. As a result, through all the samples and stone map, it is known that when K=4, there is an optimal ordered partition. According to various land use types, the overall vertical soil moisture profile in this area can be divided into 4 types: weak moisture utilizing layer, root concentration layer, strong water consumption layer, and moisture regulating layer. Meanwhile, the middle two layers can be merged into a layer of moisture utilizing. [Conclusion] Based on the orderly clustering method the result of soil moisture profile distribution fits for Loess Plateau area. So the hierarchical method is reasonable.

Key words: Loess hilly area; orderly classification; soil moisture; stratification

^{← [}收稿日期] 2010-06-22

[[]基金项目] 中国科学院西部之光项目(2009y236);国家自然科学基金项目(40871246)

[[]作者简介] 王信增(1985-),男,河南濮阳人,在读硕士,主要从事土地资源利用与管理研究。

E-mail:wangxinzeng_1986@163.com

[[]通信作者] 焦 峰(1967-),男,陕西三原人,副研究员,博士,主要从事 GIS 应用、水土保持与环境效应监测评价研究。 E-mail:Jiaof11@126.com

在于旱半干旱的黄土高原,土壤水分是影响作 物牛长和植被恢复的重要因子[1-5]。受降雨、植被、 地形、土壤质地和土地利用方式等因素的影响,土壤 剖面水分会形成一定的层次,而土壤剖面的水分特 征能反映土壤供水能力。研究土壤剖面水分特征, 可为了解土壤水分性状、合理利用土壤水资源及改 良土壤提供依据。研究土壤水分剖面分层的方法较 多,目前应用较为广泛的是经验法^[6]与变异系数 法[7]。这些方法多是在经验和统计学的基础上初步 指定变异数值作为分界线,以利于对十壤水分的活 动状况进行直观认识和评价,但提出的指标间界线 不够明确,且受主观因素影响,也没有给出具有严密 数学逻辑性的解释。有序聚类法是数理统计中研究 "物以类聚"的一种方法。由于它能解决许多实际问 题而受到人们的重视,该方法能在一定程度上减少 主观因素的影响^[8-9],目前已在钻井工程的地层特性 评价^[10]、湖泊沉积物的垂直剖面分层^[11]、风化岩体 定量分带[12-13]等研究中得到了成功应用。本试验以 地处黄土高原丘陵沟壑区的安塞县4种土地利用类 型的土壤水分剖面为研究对象,对有序聚类法在土 壤水分垂直剖面划分中的应用进行初步研究,以期

为土壤水资源的合理利用及土壤改良提供依据。

1 研究区概况

研究区位于陕西省安塞县(108°51′44″~ 109°26′18″E,36°30′45″~37°19′31″N),地处陕北黄 土高原丘陵沟壑区,处于黄河中游,属于暖温带半干 旱气候区,大陆性季风气候。冬季干旱,夏秋多雨。 太阳辐射较强,光照充足,历年平均气温 8.8℃;年 均降雨量 505.3 mm,年际变化大且分布不均,降雨 多集中在7-9月份,占全年降雨总量的 63%,且大 多以暴雨形式出现;该区土壤为黄绵土,粉砂 质^[14-15]。土地利用类型主要有果园用地、乔木林地、 灌木林地、天然草地、坡耕地等^[16]。该区域属于森 林草原带,人工植被类型主要为刺槐、柠条等,白羊 草和长芒草等草本植物是天然草地的主要植被类 型。

2 研究方法

2.1 样地布设

对 4 种不同土地利用类型进行土壤水分取样, 共选 60 个取样点,各样地的基本情况见表 1。

表 1 供试样地的基本情况

Table 1	Basical	condition	of	sample	sites
---------	---------	-----------	----	--------	-------

用地类型	主要植被类型	坡向	地形部位	样点数
Land-use type	Main vegetation type	Slope aspect	Topographic position	Sample amount
乔木林地 Tree land	刺槐林 Locust forest	阳坡 Sunny slope	梁峁中上 Upper gully slope	15
灌木林地 Shrub land	柠条林 Caragana forest	阴坡 Shady slope	梁峁中下 Lower gully slope	15
果园用地 Orchard land	苹果树 Apple tree	阴坡 Shady slope	梁峁中下 Lower gully slope	15
天然草地 Natural grassland	白羊草、长芒草 Silver beard grass,long awn grass	阳坡 Sunny slope	梁峁中上 Upper gully slope	15

2.2 土壤水分测定与分析方法

采用"土钻法",分层测定 0~500 cm 土层的土 壤含水量,每层 20 cm 厚,用土钻取出土样后,将土 样带回实验室在 105 ℃下烘干至恒质量,计算土样 土壤含水量。用 DPSv 7.05 版软件进行数据分析。

2.3 模型理论依据

运用有序聚类法进行土壤水分剖面分层的基本 思路为:将各样地 0~500 cm 土层所取土样(共 25 层)的水分观测值,构成向量有序样品 $x_{(1)}, x_{(2)}, x_{(3)}, \dots, x_{(25)}, 其中 1, 2, 3, \dots, 25 为 0~20, 20~40, 40~60, \dots, 480~500 cm 土层的编号。有序聚类法$ 的具体步骤见文献[17-18]。

3 结果与分析

3.1 最优分类数 K 的确定

确定样地土层最优分类数 K 是聚类分析的关

键,用 DPS 软件中的有序聚类分析将所有可能的聚 类解全部输出,结果如表 2 所示。从表 2 可以看出, 当分类数 K=2 时,其误差函数为 3.388 4,最优分 割结果为 1~2,3~25,即 0~40 cm 土层为第 1 层, 40~500 cm 土层为第 2 层;当分类数 K=3 时,其误 差函数为 1.134 5,最优分割结果为 1~2,3~14, 15~25,即 0~40 cm 土层为第 1 层,40~280 cm 土 层为第 2 层,280~500 cm 土层为第 3 层;其他依此 类推。随着分类数 K 的增加,误差函数依次减小。 确定最优分类数 K 时,应综合考虑几点:各类重 心间聚类应较大,各类所包含的个体数目不应过多, 分类数目应符合分析的目的等。本研究利用碎石图 确定最优分类数 $K^{[18]}$,即以误差函数为 x 轴,以分 类数为 y 轴作碎石图。所有供试样地的碎石图见 图 1。

表 2 不同分类数下所有样地土层的分类结果

Table 2 Classification results of the sample soil layers under different clusters numbers

分类数 K Clusters number K	误差函数 Error coefficient	最优分割结果 Optimal segmentation result
2	3.388 4	1~2,3~25
3	1.134 5	$1 \sim 2, 3 \sim 14, 15 \sim 25$
4	0.502 9	$1 \sim 2, 3 \sim 14, 15 \sim 22, 23 \sim 25$
5	0.320 6	$1,2 \sim 3,4 \sim 14,15 \sim 22,23 \sim 25$
6	0.230 3	$1,2 \sim 3,4,5 \sim 14,15 \sim 22,23 \sim 25$
7	0.170 3	$1, 2, 3, 4, 5 \sim 14, 15 \sim 22, 23 \sim 25$
8	0.128 8	$1, 2, 3, 4, 5 \sim 8, 9 \sim 14, 15 \sim 22, 23 \sim 25$
9	0.097 4	1,2,3,4,5~8,9~14,15,16~22,23~25
10	0.069 7	1,2,3,4,5~8,9~14,15,16~22,23~24,25
11	0.052 9	$1, 2, 3, 4, 5 \sim 6, 7 \sim 8, 9 \sim 14, 15, 16 \sim 22, 23 \sim 24, 25$
12	0.038 5	$1, 2, 3, 4, 5 \sim 6, 7 \sim 8, 9 \sim 14, 15, 16 \sim 21, 22, 23 \sim 24, 25$
13	0.032 4	$1,2,3,4,5{\sim}6,7{\sim}8,9{\sim}10,11{\sim}14,15,16{\sim}21,22,23{\sim}24,25$
14	0.024 6	$1, 2, 3, 4, 5 \sim 6, 7 \sim 8, 9, 10, 11 \sim 14, 15, 16 \sim 21, 22, 23 \sim 24, 25$
15	0.018 8	$1, 2, 3, 4, 5 \sim 6, 7 \sim 8, 9, 10, 11 \sim 13, 14, 15, 16 \sim 21, 22, 23 \sim 24, 25$
16	0.013 8	$1, 2, 3, 4, 5 \sim 6, 7 \sim 8, 9, 10, 11 \sim 13, 14, 15, 16 \sim 19, 20 \sim 21, 22, 23 \sim 24, 25$
17	0.011 0	$1, 2, 3, 4, 5 \sim 6, 7 \sim 8, 9, 10, 11 \sim 13, 14, 15, 16, 17 \sim 20, 21, 22, 23 \sim 24, 25$
18	0.008 6	$1, 2, 3, 4, 5 \sim 6, 7, 8, 9, 10, 11 \sim 13, 14, 15, 16, 17 \sim 20, 21, 22, 23 \sim 24, 25$
19	0.006 4	$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 {\sim} 13, 14, 15, 16, 17 {\sim} 20, 21, 22, 23 {\sim} 24, 25$
20	0.004 9	$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \\ \sim 13, 14, 15, 16, 17 \\ \sim 20, 21, 22, 23, 24, 25$
21	0.003 4	$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 {\sim} 13, 14, 15, 16, 17, 18 {\sim} 19, 20 {\sim} 21, 22, 23, 24, 25$
22	0.002 0	$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \\ \sim 13, 14, 15, 16, 17, 18, 19 \\ \sim 20, 21, 22, 23, 24, 25$
23	0.000 7	$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 \sim 13, 14, 15, 16, 17, 18, 19 \sim 20, 21, 22, 23, 24, 25$
24	0.000 3	$1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 \\ \sim 20, 21, 22, 23, 24, 25$

由图 1 可知,随着类的不断聚集,分类数不断减 少,分类间的距离逐渐增大。当 K≥5 时,各分类间 误差函数差异较小,形成极为"陡峭的山峰",但当 K≪4 时,分类间的距离迅速增大,形成极为"平坦的 碎石路"。根据分类间距离小形成类的相似性大,分 类间距离大形成类的相似性小的原则,可以找到"山 脚"下的拐点"碎石",以其作为最优分类数,图 1 中 确定的最优分类数 K=4。

图 1 基于分类数与误差函数确定的所有样地碎石图 Fig. 1 Stone graph of all plots based on clusters numbers and error coefficients

3.2 乔木林地的土层分类情况

用误差函数与分类数确定的乔木林地的碎石图 如图 2 所示。由图 2 可知,K=4是碎石图的拐点, 即确定最优分类数 K=4。将所有乔木林样地土壤 水分含量值进行有序分割,结果(表 3)显示,当 K=4 时,乔木林地可分为 4 层,第 1 层是 0~40 cm 土 层,第 2 层是 40~280 cm 土层,第 3 层是 280~440 cm 土层,第 4 层是440~500 cm 土层。

图 2 基于分类数与误差函数确定的乔木林地碎石图 Fig. 2 Stone graph of tree plots based on clusters numbers and error coefficients

根据余新晓等^[19]的研究结果可知,距地表 0~20 或 0~40 cm 土层一般为土壤水分弱利用层,表明本研究将 0~40 cm 土层划分为第 1 层是合理的。 单长卷等^[20]研究表明,黄土高原丘壑区阳坡和半阳 坡的吸水根集中分布在 0~200 cm 土层,在 200~ 400 cm 土层分布较少,300~450 cm 土层为刺槐林 强烈耗水层。可见本研究中乔木林地最优分割的第 2、3 层分别为根系集中区和强烈耗水区,由于以上 2 层水分大部分为植物所用,因此将其定义为土壤水 分利用层。440~500 cm 土层的土壤水分在上层水 分供应不足时,可以起到调节作用,故称之为土壤水 分调节层。本研究对乔木林地土层土壤水分剖面的 划分与袁焕英等^[21]、陈海滨等^[22]、李俊等^[17]的研究 结果一致。由此可见,基于有序聚类法的乔木林地 土壤水分剖面垂直划分结果是合理的。

表 3 不同分类数下乔木林地土层的分类结果

Table 3 Classification results of the tree sample soil layers under different clusters numbers

分类数 Clusters number	误差函数 Error coefficient	最优分割结果 Optimal segmentation result
2	4.122 6	1~2,3~25
3	1.455 4	1~2,3~14,15~25
4	0.812 0	$1 \sim 2, 3 \sim 14, 15 \sim 22, 23 \sim 25$
5	0.469 5	$1 \sim 2, 3 \sim 4, 5 \sim 14, 15 \sim 22, 23 \sim 25$
6	0.203 2	1,2,3~4,5~14,15~22,23~25
7	0.1617	$1,2,3 \sim 4,5 \sim 8,9 \sim 14,15 \sim 22,23 \sim 25$
8	0.128 8	$1, 2, 3, 4, 5 \sim 8, 9 \sim 14, 15 \sim 22, 23 \sim 25$
9	0.097 4	$1, 2, 3, 4, 5 \sim 8, 9 \sim 14, 15, 16 \sim 22, 23 \sim 25$
10	0.069 7	$1, 2, 3, 4, 5 \sim 8, 9 \sim 14, 15, 16 \sim 22, 23 \sim 24, 25$
11	0.052 9	$1, 2, 3, 4, 5 \sim 6, 7 \sim 8, 9 \sim 14, 15, 16 \sim 22, 23 \sim 24, 25$
12	0.038 5	$1, 2, 3, 4, 5 \sim 6, 7 \sim 8, 9 \sim 14, 15, 16 \sim 21, 22, 23 \sim 24, 25$
:	:	:
24	0.000 3	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19~20,21,22,23,24,25

3.3 灌木林地、果园用地与天然草地的土层分类 情况

基于分类数和误差函数确定的灌木林地、果园 用地、天然草地的碎石图见图 3。由图 3 可知,尽管 各样地误差函数大小有别,但是其分类结果与图 1 基本一致,即确定最优分类数 K=4。

鉴于灌木林地、果园用地与天然草地的分类步骤与乔木林地相同,故仅列出分类数 K=4 时各样 地土层的分类情况(表 4)。

由表4可以看出,当K=4时,灌木林地最优分割的4层分别为0~40,40~260,260~340,340~ 500 cm 土层。果园用地最优分割的4层分别为0~ 20,20~100,100~220,220~500 cm 土层。灌木林 地、果园用地的第1层与余新晓等^[19]的研究结论相 似。灌木林地的根系较乔木林地分布浅,根系主要 集中于 100~200 cm 土层,但据有关研究,柠条的用 水深度亦可超过 500 cm,其强烈用水层在 250~400 cm 土层^[23]。灌木林地最优分割的第 2(40~260 cm 土层),3 层(260~340 cm 土层)分别为植物根系的 主要分布区域与强烈耗水区域,都属于主要的植被 用水层,故可称之为土壤水分利用层;340~500 cm 土层为土壤水分调节层。苹果树的根系分布主要分 布在0~100 cm 土层,这与果园用地土层分类结果 基本一致^[22],表明该分层方法可行,分层结果比较 合理,且与刘继龙等^[24]的研究结论基本一致。

天然草地土层的分类结果为:第1层为0~20 cm 土层,第2层为20~60 cm 土层,第3 层为60~ 300 cm 土层,第4 层为300~500 cm 土层。第1层 的划分结果与王子婷等^[7]的研究结果一致。天然草 地的根系主要分布在0~40 cm 土层^[25-26],因此将 20~60 cm 土层划归为土壤水分利用层,结果符合 实际情况,故将该层定义为土壤水分利用层。

表 4 最优分类数(K=4)下灌木林地、

果园用地、天然草地土层的分类情况

Table 4 Classification results of soil layers of shrub land, orchard land and natural grassland when K=4

用地类型	误差函数	最优分割结果
Land-use	Error	Optimal segmentation
type	coefficient	result
灌木林地 Shrub land	2.620 0	1~2,3~13,14~17,18~25
果园用地 Orchard land	0.978 0	1,2~5,6~11,12~25
天然草地 Natural grassland	1.278 0	1,2~3,4~15,16~25

4 结论与讨论

1)从专业角度无法正确确定最优分类数 K 时, 可以利用碎石图进行确定,这是有序聚类法的特征 之一^[27]。本研究对全部样本进行了最优分割,并以 误差函数为横轴、分类数为纵轴作碎石图,得出当 K=4 时分类结果最优。

2)对不同土地利用类型而言,当 K=4 时,分层 结果与前人的研究结果基本一致,不但能被合理解 释,而且符合陕北黄土高原丘陵沟壑区的土壤水分 垂直分布实际^[23]。在乔木林地中,0~40 cm 土层 为土壤水分弱利用层,40~440 cm 土层为土壤水分 利用层,440~500 cm 土层为土壤水分调节层;在灌 木林地中,40~340 cm 土层为土壤水分利用层。

3)果园用地因受人为因素的影响,所以第1层 土壤水分弱利用层(0~20 cm 土层),及土壤水分利 用层(20~220 cm 土层)的下限,均比乔木、灌木林 地小。对于天然草地而言,由于其植被类型及根系 分布特殊,而且该样地浅层土壤水分更易受地形、降 水等因素影响,因此采用有序聚类法对其土壤水分 剖面的划分还需进一步研究。总体而言,黄土高原 丘陵沟壑区土壤水分剖面大致可分为土壤水分弱利 用层、植被根系主要集中层、强烈耗水层、土壤水分 调节层4层;而中间2层亦可简单地归结为土壤水 分利用层,这与前人的分类结果基本一致^[17]。

4)在聚类分析中,本研究根据最优分割法得出的结果与经验法、变异系数法基本符合^[19-22],表明了该分层方法的合理性;同时有序聚类法也在很大程度上减少了主观因素的影响,具有严密的数理逻辑性和客观适用性。

[参考文献]

- [1] 吴钦孝,赵鸿雁.黄土高原水土保持目标及对策 [J].水土保持研究,1999,6(2):76-80.
 Wu Q X, Zhao H Y. Goal of soil and water conservation and countermeasures of its realization in the Loess Plateau [J]. Research of Soil and Water Conservation, 1999,6(2):76-80. (in Chinese)
 [2] 杨文治,田均良.黄土高原土壤干燥化问题探源 [J].土壤学
- [2] 杨文治,田均良,黄土高原土壤十燥化问题探源[J].土壤学 报,2004,41(1):1-6.

Yang W Z, Tian J L. Essential exploration of soil aridization in Loess Plateau [J]. Acta Pedologica Sinica,2004,41(1):1-6. (in Chinese)

[3] 徐炳成,山 仑,陈云明.黄土高原半干旱区植被建设的土壤水 分效应及其影响因素 [J].中国水土保持科学,2003,1(4):32-35.

Xu B C, Shan L, Chen Y M. Review and discuss on the effect and influence factors of vegetation construction on soil water in semi-arid area on Loess Plateau [J]. Science of Soil and Water Conservation, 2003, 1(4): 32-35. (in Chinese)

- [4] 孙长忠,黄宝龙,陈海滨,等.黄土高原人工植被与其水分环境 相互作用关系研究[J].北京林业大学学报,1998,20(3):7-14. Sun C Z, Huang B L, Chen H B, et al. Interaction between soil water conditions and different kinds of artificial plant cover in the Loess Plateau [J]. Journal of Beijing Forestry University, 1998,20(3):7-14. (in Chinese)
- [5] 毕建琦,杜 峰,梁宗锁,等.黄土高原丘陵区不同立地条件下 柠条根系研究 [J].林业科学研究,2006(2):225-230.
 Bi J Q, Du F, Liang Z S, et al. Research on root system of *Caragana korshinskii* at different site conditions in the hilly regions of Loess Plateau [J]. Forest Research,2006(2):225-230.
 (in Chinese)
- [6] 阮成江,李代琼.半干旱黄土丘陵区沙棘林地土壤水分及其对 沙棘生长影响研究 [J].水土保持通报,1999,19(5):27-30.
 Ruan C J,Li D Q. Soil moisture and its influence on seabuckthorn growth in semi-arid Loess Hilly Region [J]. Bulletin of Soil and Water Conservation,1999,19(5):27-30. (in Chinese)
- [7] 王子婷,于洪波,莫保儒,等. 定西龙滩流域不同人工植被类型 土壤水分动态研究[J]. 甘肃林业科技,2009,34(1):14-19.
 Wang Z T,Yu H B,Mo B R,et al. Study on soil moisture dynamics of different artificial vegetation at Longtan Watershed in Dingxi [J]. Journal of Gansu Forestry Science and Technolo-

gy,2009,34(1):14-19. (in Chinese)

- [8] 李 俊,毕华兴,李孝广,等.晋西黄土残塬沟壑区不同植被类型土壤水分动态研究[J].水土保持研究,2006,13(6):65-68. Li J,Bi H X,Li X G,et al. Study on dynamic changes of soil water of different vegetation types on the Loess Plateau of Western Shanxi Province [J]. Research of Soil and Water Conservation,2006,13(6):65-68. (in Chinese)
- [9] 李瑜琴,赵景波.西安附近丰水年秋季苹果林地土壤水分恢复研究[J].中国生态农业学报,2007,15(4):75-77.
 Li Y Q,Zhao J B. Soil moisture condition and dry-layer development under Xi'an southern suburb apple orchard in rainy years [J]. Chinese Journal of Eco-Agriculture,2007,15(4):75-77. (in Chinese)
- [10] 吴惠梅,李忠慧,朱 亮,等.有序样品聚类的最优分割法在地 层特性评价中的应用[J].石油天然气学报,2008(2):460-462.

Wu H M,Li Z H,Zhu L,et al. Application of optimum partition ordinal clustering in the evaluation of formation features [J]. Journal of Oil and Gas Technology,2008(2):460-462. (in Chinese)

- [11] 陈碧珊,潘安定,李 冰,等. 有序聚类方法在沉积物粒度分带中的应用[J]. 安徽农业科学,2009,37(35):17679-17682.
 Chen B S, Pan A D, Li B, et al. Application of sequential clustering method in the vertical dividing of sediments grain-size
 [J]. Journal of Anhui Agricultural Sciences, 2009, 37(35): 17679-17682. (in Chinese)
- [12] 冯文丽,崔洪庆,刘远征. 有序聚类法在锦凌水库风化岩体定量分带中的应用 [J]. 水科学与工程技术,2006(增刊2):45-46.

Feng W L, Cui H Q, Liu Y Z. Application of ordered clustering method in the quantifying classification on weathering rock mass of Jinling Reservoir [J]. Water Sciences and Engineering Technology, 2006(Suppl.): 45-46. (in Chinese)

- [13] 冯文丽,崔洪庆,刘远征. 基于有序聚类法的风化岩体定量分 带研究 [J]. 岩土工程技术,2006(6):297-299.
 Feng W L,Cui H Q,Liu Y Z. Study of ordered clustering procedure in the quantifying classification on weathered rock mass [J]. Geotechnical Engineering Technique,2006(6):297-299. (in Chinese)
- [14] 焦 峰,温仲明,王 飞.黄土丘陵区小叶杨生长空间差异性及其土壤环境效应[J].水土保持学报,2009,23(3):194-199. Jiao F, Wen Z M, Wang F. Spatial difference and soil condition effect of *Populus simonii* in Loess Hilly Region [J]. Journal of Soil and Water Conservation, 2009, 23(3): 194-199. (in Chinese)
- [15] 焦 峰,温仲明,从怀军.基于GIS的黄土丘陵区土壤水库库 容组成及其定量分析:以陕北安塞县为例[J].水土保持研 究,2009,16(2):15-23.

Jiao F, Wen Z M, Cong H J. Makeup of soil water reservoir and its quantitative analysis in the Loess Hilly Region: A case study of Ansai County, Shaanxi Province [J]. Research of Soil and Water Conservation, 2009, 16(2):15-23. (in Chinese)

- [16] 焦 峰,温仲明,陈云明. 基于 GIS 的黄丘区土壤水分制图及 其定量化分析 [J].水土保持研究,2005,23(3):129-131,171. Jiao F, Wen Z M, Chen Y M, Mapping and quantitative analysis of soil moisture using GIS techniques [J]. Research of Soil and Water Conservation, 2005,23(3):129-131,171. (in Chinese)
- [17] 李 俊,毕华兴,李笑吟,等. 有序聚类法在土壤水分垂直分层中的应用[J].北京林业大学学报,2007,29(1):98-101.
 Li J,Bi H X,Li X Y. et al. Application of sequential clustering method in vertical dividing of soil moisture profiles [J]. Journal of Beijing Forestry University, 2007, 29(1):98-101. (in Chinese)
- [18] 张尧庭,方开泰. 多元统计分析 [M]. 北京:科学出版社, 2003:352-358.
 Zhang Y T, Fang K T. Multistatistical analytical [M]. Beiiing, Science Press, 2003: 352-358. (in Chinese)

[19] 佘新晓,张建军,朱金兆. 黄土地区防护林生态系统土壤水分条件的分析与评价[J]. 林业科学,1996,32(4):289-297.
Yu X X, Zhang J J, Zhu J Z. Analysis and evaluation of soil water conditions protective forest ecosystem in Loess Area
[J]. Scientia Silvae Sinicae, 1996, 32(4): 289-297. (in Chinese)

- [20] 单长卷,徐新娟.黄土高原刺槐水分关系研究进展[J].安徽 农业科学,2006,34(6):1075-1076.
 Shan C J,Xu X J. Research on the relationship between locust and soil water in Loess Plateau [J]. Journal of Anhui Agricultural Sciences,2006,34(6):1075-1076. (in Chinese)
- [21] 袁焕英,许喜明.黄土高原半干旱丘陵沟壑区人工林土壤水分 动态研究[J].西北林学院学报,2004,19(2):5-8.
 Yuan H Y, Xu X M. Soil water dynamics of plantations in sub-arid gully and hilly regions of the Loess Plateau [J]. Journal of Northwest Forestry University, 2004, 19(2): 5-8. (in Chinese)
- [22] 陈海滨,孙长忠,安 峰,等.黄土高原沟壑区林地土壤水分 特征的研究: I.土壤水分的垂直变化和季节变化特征 [J]. 西北林学院学报,2003,18(4):13-16. Chen H B,Sun C Z, An F, et al. A study on forest soil water features of Loess Plateau gully and hilly region: I. Vertical and seasonal variation of soil water [J]. Journal of Northwest Forestry University,2003,18(4):13-16. (in Chinese)
- [23] 杨文治,邵明安. 黄土高原土壤水分研究 [M]. 北京:科学出版社,2000:272-274.
 Yang W Z,Shao M A. Studies on soil water in Loess Plateau [M]. Beijing:Science Press,2000:272-274. (in Chinese)
- [24] 刘继龙,张振华,谢恒星,等.苹果园表层与深层土壤水分的转换关系研究[J].农业现代化研究,2006,27(4):304-306. Liu J L,Zhang Z H,Xie H X. On conversion relation between surface and deep soil water of apple orchard [J]. Research of Agricultural Modernization, 2006, 27(4): 304-306. (in Chinese)