耕层土壤 N2O 排放与温度及土壤深度依变性

白红英1,张一平2,孙 华1,张清雨1,张善红1

(1 西北大学 城市与资源学系,陕西 西安 710127;2 西北农林科技大学 资源环境学院,陕西 杨凌 712100)

[摘 要] 【目的】揭示耕层不同深度土壤 N_2 O 的排放机制,为农田土壤 N_2 O 减排和预测提供科学依据。【方法】利用室内模拟试验,研究了西北地区冬小麦孕穗期、开花期和成熟期原状土壤,在相应田间水热条件下(温度:15,20,25 °C;含水率:14.50%,18.70%),不同深度(5,10,15,20 cm) 耕层土壤 N_2 O 的排放特征。【结果】土壤 N_2 O 平均排放通量与土样 NO_3^- -N(底物)含量有关,孕穗期(15 °C)土样,因其 NO_3^- -N含量较高(10.09 mg/kg),故 N_2 O 平均排放通量亦较大。在一定土壤 NO_3^- -N含量范围(3.18~4.12 mg/kg),不同深度土样的 N_2 O 平均排放通量与水热条件关系密切。孕穗期(15 °C),较深土样 N_2 O 平均排放通量明显下降,其 N_2 O 平均排放通量表观滞留率显著增加,含水率较高土样表现更为突出;随着温度的升高(20,25 °C),较深土样 N_2 O 平均排放通量明显升高,含水率较高土样增加明显,不同深度土样 N_2 O 平均排放通量几乎呈线性增加,其 N_2 O 平均排放通量表观滞留率明显减少。在孕穗期(15 °C)水肥较充足的条件下,耕层土样 N_2 O 排放主要来自 5~15 cm 土层;随温度升高,较深土样对 N_2 O 排放的贡献则更为突出。【结论】全球气候变暖将促使较深层次土壤中的 N_2 O 逸出地面,排入大气。

[关键词] N₂O排放通量;温度依变性;土壤深度;表观滞留率

「中图分类号 S153

「文献标识码 A

「文章编号 1671-9387(2009)11-0201-06

Temperature and depth's dependences on N₂O emission in the cultivated layer soil

BAI Hong-ying¹, ZHANG Yi-ping², SUN Hua¹, ZHANG Qing-yu¹, ZHANG Shan-hong¹

(1 Department of Urban and Resource Science, Northwest University, Xi'an, Shaanxi 710127, China;

2 College of Resources and Environment Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China)

Abstract: [Objective] The research studied the mechanism of soil N₂O emission at different depths to offer scientific bases for reducing farmland N₂O discharge flux. [Method] Soil samples from a wheat field were analyzed to study the characteristics of soil N₂O emission under the filed hydrothermal conditions in a lab (temperature:15,20,25 °C, soil moisture:14.50%,18.70%, soil depths:5,10,15,20 cm). [Result] The average soil N₂O flux was closely related to soil NO₃-N content. Due to the higher NO₃-N (10.09 mg/kg), soil N₂O flux at the booting stage maintained a high level even at a lower temperature (15 °C). When soil NO₃-N content was in a certain range (3.18-4.12 mg/kg), soil hydro-thermal conditions would control soil N₂O emission at different depths. When soil temperature was low at 15 °C, soil N₂O flux in the deeper layer decreased obviously, and retention rate increased significantly, especially for the soils with high moisture. N₂O flux from deeper soil increased obviously as soil temperature increased, N₂O flux from different depths increased linearly and retention rate decreased significantly. At booting stage (15 °C) with a good soil moisture and fertility, soil N₂O flux was mainly from 5-15 cm layers. More N₂O was released from

^{* [}收稿日期] 2009-08-31

[[]基金项目] 国家科技基础性工作专项重点项目(2007FY110800);教育部科技重点项目(209123);陕西省自然科学基金资助项目 (2006D05)

[[]作者简介] 白红英(1962-),女,陕西凤翔人,教授,博士,主要从事土壤环境化学和全球变化生态学研究。 E-mail;hongyingbai@163.com

deeper soil as soil temperature increased. [Conclusion] Global warming increases N₂O emission from deeper soil.

Key word: N2O flux; soil temperature dependence variability; soil depth; apparent retention rate

全球变暖已成为不争的事实,已引起了国际社会的广泛关注。 N_2O 作为重要的温室气体之一,在大气中寿命长达 114 年 $^{[1]}$;另外,其还参与大气中许多光化学反应,破坏大气臭氧层 $^{[2-4]}$ 。根据政府间气候变化专业委员会(IPCC)第 4 次评估报告,大气中 N_2O 浓度已从工业化前约 270 uL/ m^3 增加到 2005年的 319 uL/ m^3 [1]。农田生态系统是重要的 N_2O 排放源,每年农业土壤排放的 N_2O -N 约为 3. 3 $(0.6\sim14.8)$ Tg,占人类活动排放总量的 46 %[5]。

目前,关于农田生态系统中土壤 N2O 排放及其 影响因子的研究较多[6-12],对土壤不同层次 N₂O 浓 度的测定结果表明,不同土层中 N₂O 浓度为 60~ 150 cm>30 cm>10 cm,深层土壤 N₂O 的主要来源 是土壤的反硝化作用[13]。但土壤中产生的 N2O 并 不能全部逸出地面,由于土壤吸收、阻滞、反硝化作 用等的影响,只有少量 N₂O 排放进入大气,而耕层 土壤受农事活动、施肥等因素的影响,已成为 N2O 排放的主要场所[6-10],其不同深度的水热条件、作物 根系活性、微生物状态、土壤性状等均有差异,必然 会对土壤 N₂O 的生成、排放产生影响。探明不同深 度耕层土壤 N2O产生、运移等排放机制,有助于对 农田土壤 N₂O 排放进行针对性的调控,但目前尚缺 乏这方面的研究。本试验以西北地区冬小麦不同生 育期土壤为研究对象,借助室内模拟试验,观测了相 应田间水热条件下,不同深度耕层原状土壤 N₂O 排 放的特征,旨在揭示不同小麦生长期、不同深度土壤 N_2O 的排放机制,为农田生态系统 N_2O 排放的预测 提供科学依据。

1 材料与方法

1.1 供试土样

土样来源于西北农林科技大学农作一站常规耕作的冬小麦田,播种时,以含 N 46%的尿素为氮源,磷肥为含 P_2O_5 12%的普通过磷酸钙,将氮肥(N,225 kg/hm²)和磷肥(P_5O_2 ,150 kg/hm²)作基肥,一次施入耕层,混合均匀。于每年 10 月中旬播种小麦,次年 06-03 左右收获。整个生育期不进行人为灌水。于小麦播种后次年 4 月至 6 月初,分别采集小麦生长旺盛期(孕穗期、开花期和成熟期)耕层原状土壤。

1.2 试验设计

室内培养试验设温度、水分、土层深度(对应的是培养土柱高)3个因子:温度设3个水平,分别为小麦孕穗期、开花期和成熟期对应的田间平均温度,分别为15,20,25℃;水分设2个水平,分别为试验区田间最大持水量的65%(\mathbf{W}_1)和85%(\mathbf{W}_2),相应土壤含水率分别为14.50%和18.70%;为观测不同深度土壤产生 \mathbf{N}_2 O逸出土表的比例,并保持土壤上下层的连续性,特设计培养土柱高为5,10,15和20cm4个水平;共计24个处理,每处理重复3次。

1.3 试验方法

于小麦孕穗期、开花期和成熟期,用直径 7 cm,长度为采集土样深度的一组特制不锈钢环刀,取 $0\sim5$, $0\sim10$, $0\sim15$ 和 $0\sim20$ cm 原状土壤 3 组,将原状土壤湿度调节至设计的 2 个含水率后,与环刀一起置于密封的玻璃容器内,环刀上部开放,下端用带微孔的盖子盖好,内有双层滤纸,密闭玻璃容器,置于对应田间平均温度(15,20,25 $\mathbb C$)的培养箱中培养。培养后,每隔 24 h 用 2 mL 注射器取样 1 次,用于 N_2 O 释放量的测定,每次取样之后,打开容器口 30 min 左右以平衡容器内气压,重新密闭培养,重复上述试验直至培养后 10 d。 N_2 O 测定及 N_2 O 排放通量的计算均采用文献[10]的方法。

2 结果与分析

2.1 小麦不同生育期不同深度土样 N₂O 的排放特征

表 1 为 2 种水分条件下,小麦不同生育期不同深度土样的 N_2 O 排放通量。图 $1\sim3$ 分别为小麦孕穗期、开花期和成熟期土样 N_2 O 平均排放通量随土样深度的变化情况。从表 1 可以看出,在 2 种水分条件下,小麦孕穗期土样 N_2 O 排放通量均最高,成熟期次之,开花期最小。

2.1.1 孕穗期 由图 1 可知,在小麦孕穗期,培养温度为 15 ℃时,在 2 种水分条件下,不同深度土样 N_2 O 排放特征具有差异。当土壤含水率为 14.50% 时,各深度土样间虽然土壤质量不同,但其 N_2 O 排放通量差异不显著(P=0.089>0.05),表明土壤中产生的 N_2 O 并未全部逸出土表;0 \sim 5 cm 土样因土层薄,土壤质量小, N_2 O 平均排放通量最低,而其他 3 个土柱 N_2 O 平均排放通量表现为 0 \sim 10 cm>0 \sim

 $15 \text{ cm} > 0 \sim 20 \text{ cm}$,与土样深度变化呈相反的顺序, 放通量贡献率较大。 这表明在此条件下, $5 \sim 10 \text{ cm}$ 土层土壤对 $N_2 O$ 排

表 1 小麦不同生育期不同深度土样的 N_2 O 排放通量

Table 1	N ₀ O flux	from	different	depths a	t different	growth stages

 $\mu g/(m^2 \cdot h)$

			- 12 0	om annerem ac	F	8		μς/ (111 117
培养 温度/℃ Temperature	土壤 含水率/% Moisture	土样 深度/cm Soil depth						
			1	2	3	4	7	10
15 (孕穂期 Booting stage)	14.50	0~5	1.20	3.60	8.80	4.32	3.16	2.16
		$0 \sim 10$	7.50	10.93	28.20	18.39	13.32	3.08
		$0 \sim 15$	9.00	13.90	20.86	11.29	12.37	10.37
		$0 \sim 20$	4.10	24.88	19.80	6.26	8.55	1.56
	18.70	$0 \sim 5$	12.10	27.50	16.10	11.85	6.85	2.06
		$0 \sim 10$	12.70	65.10	62.60	48.25	74.57	9.99
		$0 \sim 15$	16.30	44.87	97.60	98.67	148.96	15.11
		$0 \sim 20$	7.40	7.56	10.60	18.76	27.38	8.48
20 (开花期 Blooming stage)	14.50	0~5	1.60	1.78	2.04	1.28	0.94	-0.32
		$0 \sim 10$	2.94	2.35	2.11	2.41	1.56	-0.21
		$0 \sim 15$	2.57	3.24	4.84	4.52	4.22	1.10
		$0 \sim 20$	2.34	4.93	10.10	8.89	6.94	2.27
	18.70	$0 \sim 5$	2.36	2.92	2.36	1.37	0.96	0.02
		$0 \sim 10$	4.94	6.11	2.11	2.43	1.04	0.63
		$0 \sim 15$	2.56	6.72	4.84	3.19	3.62	1.42
		$0 \sim 20$	6.27	7.55	10.10	2.57	2.24	0.98
25 (成熟期 Maturing stage)	14.50	0~5	0.28	1.27	1.53	1.38	2.31	0.24
		$0 \sim 10$	1.50	1.92	1.80	1.47	1.90	0.11
		$0 \sim 15$	2.31	2.50	3.72	4.90	5.54	2.18
		$0 \sim 20$	4.64	7.24	8.15	11.08	9.51	8.16
	18.70	$0\sim5$	0.50	1.91	1.77	3.90	5.60	0.47
		$0 \sim 10$	15.10	3.62	3.84	4.97	3.72	0.19
		$0 \sim 15$	13.28	3.75	4.28	12.40	13.84	5.95
		$0 \sim 20$	20.81	9.47	12.14	15.17	12.89	12.48

由图 1 还可知,当土壤含水率为 18.70%时,各深度土样间 N_2 O 平均排放通量差异显著 (P=0.010 3),各土柱 N_2 O 平均排放通量表现为 $0\sim15$ cm $>0\sim10$ cm $>0\sim20$ cm>00 cm>00 cm>01 cm>020 cm>01 cm>020 cm>020 cm>020 cm>020 cm>020 cm>020 cm>020 cm 土

样 N_2 O 平均排放通量仍较小,这表明在较低温度 (15 °C)、水肥较充足的条件下,耕层土壤排放的 N_2 O 主要来自 $5\sim15$ cm 土层,这与田间研究结果一致[14]。

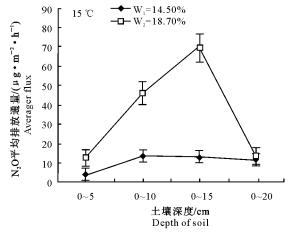


图 1 小麦孕穗期土样 N_2 O 排放通量随土层深度的变化 Fig. 1 N_2 O average flux with soil depth at booting stage 2.1.2 开花期和成熟期 研究发现,拔节期一开花期是小麦营养吸收率增长最快的时期,至开花期氮

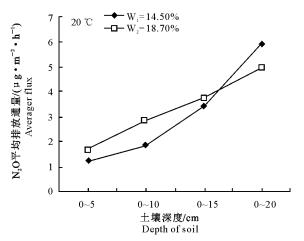


图 2 小麦开花期土样 N_2 O 排放通量随土层深度的变化 Fig. 2 N_2 O average flux with soil depth at blooming stage 吸收量已达总吸收量的 71. $97\%^{[15]}$,此时土壤中的速效氮急剧减少,反应底物 NO_3^{-} -N 不足,引起土壤

 N_2O 排放通量减少。小麦开花期和成熟期土样培养温度分别为 20 和 25 °C,与孕穗期土样(土壤 NO_3 -N 含量为10.09 mg/kg)相比,其土壤 NO_3 -N 含量均较低,分别为 4.12 和 3.18 mg/kg。由图 2、图 3 及表 1 可知,无论是随着土样深度的增加还是培养时间的延长,小麦开花期和成熟期土样 N_2O 排放通量变化幅度均较小,即在黄土性土壤中,当速效态氮含量差异较大时,反应底物 NO_3^- -N 含量成为 N_2O 排放的决定因素。小麦开花后,一方面小麦对 氮仍有少量吸收,但吸收量减少;另一方面随着温度的升高,微生物活性增强,土壤-大气界面气体交换动力增加,有利于 N_2O 的生成和逸出[16-17]。 因此,与小麦开花期土样相比,小麦成熟期土样 N_2O 排放 明显增多,表明在反应底物含量相近的情况下,温度 决定着土壤 N_2O 的排放量(表 1)。

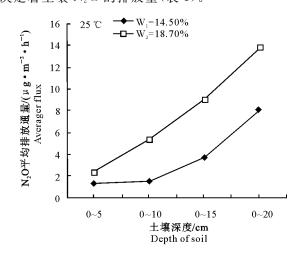


图 3 小麦成熟期土样 N_2 O 排放通量随土层深度的变化 Fig. 3 N_2 O average flux with soil depth at maturing stage 2. 2 不同土壤水分条件下土样 N_2 O 排放的温度、深度依变性

在 2 种水分条件下,小麦开花期和成熟期土样 N_2 O 平均排放通量,均随土样深度的增加而增大;且相同水分条件下,当温度从 20 ℃升高至 25 ℃时,随着土样深度的增加,土样 N_2 O 平均排放通量增幅 更为明显,并未出现如孕穗期土壤 N_2 O 排放通量减少的反常现象(图 2 和图 3)。因此本研究认为,20 ℃为供试土壤较深土样 N_2 O 排放递增的转折温度,而 $15\sim20$ ℃为供试土壤较深土样 N_2 O 由排放滞留 到排放递增的过渡温区。

2.2.1 土壤含水率为 14.50% 当土壤含水率为 14.50%时,小麦开花期和成熟期不同深度土样 N_2 O 平均排放通量差异极显著 (P<0.01 和 P<0.001),且以上 2 个小麦生育期土样 N_2 O 平均排放

通量 (\bar{Y}) 与土样深度(h)间皆呈显著的指数函数关系。

小麦开花期土样: $\bar{Y}=0.684e^{0.534h}(r=0.998)$,

$$\frac{\mathrm{d}\bar{Y}}{\mathrm{d}h} = 0.534\bar{Y}_{\circ} \tag{1}$$

小麦成熟期土样: $\overline{Y}=0.493e^{0.671h}(r=0.974)$,

$$\frac{\mathrm{d}\bar{Y}}{\mathrm{d}h} = 0.671\bar{Y} \ . \tag{2}$$

由式(1)和式(2)可见,小麦开花期和成熟期土 壤中,单位深度土样 N_2 O 平均排放通量 $(d\overline{Y}/dh)$ 均 为 \overline{Y} 的函数,且随 \overline{Y} 值的增大而增加,在一定 \overline{Y} 值 下, $d\bar{Y}/dh$ 为定值,与土样深度无关。这是由于在小 麦开花期和成熟期,土样培养时温度已达硝化及反 硝化作用较适宜的温度,而其土样含水率为供试土 壤田间持水量的 65% ($W_1 = 14.50\%$), 具有利于 N_2O 排放的土壤孔隙空间和通道,因而产出的 N_2O 量与排出的 N_2 O 量比较协调,故 $d\bar{Y}/dh$ 与土样深度 无关,而仅取决于土样本身排放的 \overline{Y} 值,即土柱产 生的 N₂O 量越多,排放的 N₂O 也越多。比较小麦 开花期和成熟期单位深度土样 N2O 平均排放量的 "深度系数"($(d\overline{Y}/dh)$ 与 \overline{Y} 的比值),成熟期土样 (0.671)>开花期土样(0.534),这与成熟期土样培 养温度较高(25℃)有关,较高温度导致了硝化和反 硝化作用及 N₂O 热扩散性的增强。

2.2.2 土壤含水率为 18.70% 土壤含水率为 18.70%时,小麦开花期各深度土样 N_2 O 平均排放 通量差异不显著(P=0.1347),而小麦成熟期各深度土样 N_2 O 平均排放 通量差异极显著(P=0.0007),以上 2个小麦生育期土壤 N_2 O 平均排放 量与土样深度的拟合方程为:

小麦开花期土样:

 $\overline{Y} = 1.510 + 2.258 \ln h \ (r = 0.980)$

$$\frac{\mathrm{d}\overline{Y}}{\mathrm{d}h} = 2.258/h_{\,\circ} \tag{3}$$

小麦成熟期土样:

 $\overline{Y} = -1.935 + 3.808h \ (r = 0.993)$

$$\frac{d\overline{Y}}{dh} = 3.808. \tag{4}$$

与土壤含水率为 14. 50%时相比,土壤含水率为 18. 70%时, N_2 O 在土体中排放逸出的空间和通道减少,对 N_2 O 的滞留作用增强。小麦开花期土样培养温度为 20 \mathbb{C} , N_2 O 的产出量及热扩散性较成熟期(25 \mathbb{C})降低,尚不能完全抵消随土样深度增加而增大的对 N_2 O 排放阻滞作用,因而其单位深度土样 N_2 O 平均排放通量 $(d\overline{Y}/dh)$ 仍与土样深度有关,

%

且与其呈反比,即随着土样深度的增加 $d\overline{Y}/dh$ 减少。小麦成熟期土样培养温度达 25 \mathbb{C} , N_2O 的产出量和热扩散性已显著增强,能抵消随土样深度增加而增大的对 N_2O 排放阻滞作用,因而其单位深度 N_2O 平均排放通量 $(d\overline{Y}/dh)$ 与土样深度无关,且在不同土样深度下均为定值(3.808)。

3 讨 论

本研究中,小麦孕穗期较深土样(0~20 cm) N_2 O 平均排放通量低于 $0 \sim 15$ cm 土柱,按常理随 着土柱的升高土壤质量也随之增加,其 N₂O 排放通 量也应高于或至少等于 0~15 cm 土柱,这一反常现 象不但出现在2种水分条件下,而且表现在整个培 养过程中,表明在密闭培养环境下这种现象真实存 在。出现这一现象的主要原因可能是,较深土样中 N₂O产生后,其释放所经途径相对较长,受阻滞作 用增大所致。当土壤温度较低时 $(15 \, \mathbb{C})$, N_2O 热扩 散性又较差,因而显著影响 N₂O 的快速排放,在密 闭的培养环境中,导致 N₂O 在土体中滞留,被土壤 进一步吸收或直接还原为 N2,特别是当土壤中底物 充足,生物活性较强时,这种强还原性会显现出来, 假如这个试验土样上方余留的空间足够大,甚至接 近开放空间,深层土样的 N₂O 滞留现象不明显。与 低温(15 ℃)处理相比,培养温度较高(20,25 ℃)处 理相同深度土样并未出现这种现象,从而证实了此判断的合理性。

为了从数量上更明确地表征土样深度对 N_2O 排放阻滞作用的大小,本研究对表观滞留率参数进行了计算。由于 $0\sim5$ cm 土层薄, N_2O 易于向大气扩散,可视为对 N_2O 扩散基本无阻滞作用和滞留现象,因此 3 个小麦生育期(对应 15,20,25 $\mathbb C$ 3 种温度) 土样,均以相应生育期 $0\sim5$ cm 土样作为计算其他深度土样 N_2O 排放滞留率的基础。首先求出不同处理 $0\sim5$ cm 土样单位干土 N_2O 平均排放通量 $y_{5\text{ cm}}[(\mu g/(\text{m}^2\cdot \mathbf{h})/g]$ 和各深度土样干土质量 G (g),则各深度土样 N_2O 平均排放通量理论值 $\overline{Y}_{2}=y_{5\text{ cm}}\times G$,被土体滞留的 N_2O 平均排放通量 $\overline{Y}_{3}=\overline{Y}_{2}-\overline{Y}_{3}$, N_2O 平均排放通量滞留率 $\overline{Y}_{2}(%)=\overline{Y}_{3}$ / $\overline{Y}_{2}\times100\%$ 。

由于本计算是以 $0\sim5$ cm 土样为基础,加之不同深度土样作物根系残留物、微生物状况以及土壤结构和容重等均有差异,因此所得 N_2 O 平均排放通量滞留率是诸多因素综合影响的总体表现,故将其称之为土样 N_2 O 平均排放通量表观滞留率。由表 2 可见,随着土样深度的增加,除小麦成熟期土壤含水率为 14.50% 土样外,其他处理土样的 N_2 O 平均排放通量表观滞留率均增大,这与实际情况相符。

表 2 小麦不同生育期不同深度土样的 N_2 O 平均排放通量表观滞留率

Table 2 Apparent retention rate of average N2O flux from different depths at different growth stages

开花期(20 ℃) 孕穗期(15℃) 成熟期(25 ℃) 含水率/% 含水率/% 含水率/% 土样深度/cm Booting stage Blooming stage Maturing stage Soil depth 14.50 18.70 14.50 18.70 14.50 18.70 $0 \sim 10$ 1.08 10.44 62.53 57.41 68.42 44.74 $0 \sim 15$ 62.98 38.67 70.03 75.63 66.71 57.94 $0 \sim 20$ 82.56 93.44 70.63 81.80 56.62 63.20

由表 2 还可知,2 种水分条件下,0~20 cm 土样 N_2 O 平均排放通量表观滞留率均随温度的升高而降低,表明温度对较深土样 N_2 O 热扩散有明显影响。在开花期(20 °C)和成熟期(25 °C)2 种水分条件下,0~10 和 0~15 cm 土样 N_2 O 平均排放通量表观滞留率也基本上随着温度的升高而降低。在小麦孕穗期(15 °C),0~10,0~15 cm 土样 N_2 O 平均排放通量表观滞留率数据均偏低。因为当土壤含水率为 14.50%和 18.70%时,小麦孕穗期土样 N_2 O 排放通量比开花期和成熟期土样相应深度分别高 3.7~9.4 倍及 7.8~18.9 倍,必然导致其滞留率降低。

以上结果表明,温度不仅决定着土壤 N2O 的产

生量,而且还决定了其逸出土壤的能量大小,只有当 N_2O 分子达到一定能级时,才能克服能障迅速排出 土表,即较深土壤 N_2O 排放存在温度依变性。在密闭环境中,深层土壤中 N_2O 的滞留现象明显,但实际上农田是一个高度开放的生态系统,一旦温度适宜,土壤中的 N_2O 分子在获得一定能量后会源源不断地逸出地面,进入大气。全球气候变暖将促使更深层次土壤中产生的温室气体排放,导致温室效应进一步加剧。

4 结 论

(1)土壤 N₂O 平均排放通量大小与土样 NO₃-N 底物含量有关,虽然孕穗期土样培养温度较低(15

 \mathbb{C}),但由于土样 NO_3^- -N 含量较高,故 N_2 O 平均排放通量较大。在一定土壤 NO_3^- -N 底物含量范围 (3.18~4.12 mg/kg),不同深度土样 N_2 O 平均排放通量大小则与水热条件关系更为密切。

(2)在小麦孕穗期(15 ℃),较深土样 N₂O 平均排放通量明显下降,其 N₂O 平均排放通量表观滞留率显著增加,特别是含水率较高土样表现更为明显。至小麦开花期和成熟期,随着温度的升高,较深土样 N₂O 平均排放通量明显升高,随着土壤质量的增加,不同深度土样 N₂O 平均排放通量几乎呈线性增加,N₂O 平均排放通量表观滞留率明显减少。

(3)在低温(15°C)、水肥充足的条件下,耕层土样 N_2 O 排放主要来自 $5\sim15$ cm 土层,而当土壤含水率为 14.50% 和较高 NO_3^- -N 条件下, N_2 O 排放贡献率以 $5\sim10$ cm 土层最大;随着温度升高,较深土样对 N_2 O 排放的贡献更为突出。全球气候变暖将促使较深层次土壤中的 N_2 O 逸出地面,排入大气。

[参考文献]

- [1] IPCC. Climate changes 2007: the scientific basis [M]. Cambridge, New York: Cambridge University Press, 2007
- [2] Delgado J A, Mosier A R. Mitigation alternatives to decrease nitrous oxides emissions and urea-nitrogen loss and their effect on methane flux [J]. J Environ Qual, 1999, 25(6):1105-1111.
- [3] Chang C, Cho C M, Janzen H H. Nitrous oxide emission from long-term manured soils [J]. Soil Sci Soc Am J, 1998, 62:677-682.
- [4] IPCC. Radiative forcing of climate changes [M]. Genera: WMO/UNEP,1994.
- [5] Velthof G L, Kuikman P J, Oenema O. Nitrous oxide emission from soils amended with residues [J]. Nutr Cyc Agroecosyst, 2002,62;249-261.
- [6] 蔡祖聪. 尿素和 KNO3 对水稻土无机氮转化过程和产物的影响——无机氮转化过程 [J]. 土壤学报,2003,40(2):239-245.
 Cai Z C. Effects of urea and KNO3 on processes and products of inorganic nitrogen transformation in paddy soils I:Processes of inorganic nitrogen [J]. Acta Pedologica Sinica,2003,40 (2):239-245. (in Chinese)
- [7] 徐 华,邢光熹,蔡祖聪,等. 土壤水分状况和质地对稻田 N₂O 排放的影响 [J]. 土壤学报,2000,37(4):499-505.

 Xu H,Xing G X,Cai Z C, et al. Effect of soil water regime and soil texture on N₂O emissions from rice paddy field [J]. Acta Pedologica Sinica,2000,37(4):499-505. (in Chinese)
- [8] 黄 耀,焦 燕,宗良纲,等. 土壤理化性质对麦田 N₂O 排放影响的研究 [J]. 环境科学学报,2002,22(5):598-601.

 Huang Y, Jiao Y, Zong L G, et al. N₂O emission from wheat cultivated soil as influenced by soil physicochemical properties [J]. Acta Scientiae Circumstantiae, 2002, 22(5):598-601. (in Chinese)

- [9] 丁 琦,白红英,李西祥,等.作物对黄土性土壤氧化亚氮排放的影响效应——根系与土壤氧化亚氮排放研究[J].生态学报,2007,27(7);2823-2831.
 - Ding Q, Bai H Y, Li X X, et al. The effects of crop on N₂O emission from loess soil: Roots and N₂O emission from soil [J]. Acta Ecologica Sinica, 2007, 27(7): 2823-2831. (in Chinese)
- [10] 維新萍,白红英,路 莉,等. 黄绵土 N₂O 排放的温度效应及 其动力学特征 [J]. 生态学报,2009,29(3):1226-1233. Luo X P,Bai H Y,Lu L, et al. The effect of temperature and moisture on N₂O flux kinetics from loessial soil [J]. Acta Ecologica Sinica,2009,29(3):1226-1233. (in Chinese)
- [11] 徐文彬,刘维屏,刘广深. 温度对旱田土壤 N₂O 的影响研究 [J]. 土壤学报,2002,39(1):1-8

 Xu W B, Liu W P, Liu G S. Effect of temperature on N₂O emissions from sub-tropical upland soil [J]. Acta Pedologica Sinica,2002,39(1):1-8. (in Chinese)
- [12] 陈书涛,黄 耀,郑循华,等.轮作制度对农田氧化亚氮排放的影响及驱动因子 [J].中国农业科学,2005,38(10):2053-2060.
 - Chen S T, Huang Y, Zheng X H, et al. Nitrous oxide emission from cropland and its driving factors under different crop rotations [J]. Scientia Agricultura Sinica, 2005, 38 (10): 2053-2060. (in Chinese)
- [13] 梁东丽,吴庆强,李生秀,等. 黄土性土壤剖面不同层次 N₂O 浓度的原位监测 [J]. 生态学报,2009,29(3):1421-1427.

 Liang DL, Wu Q Q, Li S X, et al. In-situ measurement of N₂O concentration from profile of loess soil [J]. Acta Ecologica Sinica,2009,29(3):1421-1427. (in Chinese)
- [14] 白红英,韩建刚,张一平.农田温室气体 N₂O 释放的水热效应 机理初探 [J].农业环境科学学报,2003,22(6):724-726. Bai H Y, Han J G, Zhang Y P. Mechanism of N₂O emission relying on humidity and temperature from soil [J]. Journal of Agro-Environment Science, 2003, 22(6): 724-726. (in Chinese)
- [15] 党廷辉,蔡贵信,郭胜利,等. 黄土高原黑垆土冬小麦系统中尿素氮去向及增产效果 [J]. 土壤学报,2002,39(2):199-204.

 Dang T H, Cai G X, Guo S L, et al. Fact of and crop response to nitrogen applied to winter wheat growing on heilu soil [J].

 Acta Pedologica Sinica,2002,39(2):199-204. (in Chinese)
- [16] 邹国元,张福锁,陈新平,等. 农田土壤硝化-反硝化作用与 N₂O的排放 [J]. 土壤与环境,2001,10(4):273-277. Zou G Y, Zhang F S, Chen X P, et al. Nitrification-denitrification and N₂O emission from arable soil [J]. Soil and Environmental Sciences,2001,10(4):273-277. (in Chinese)
- [17] 徐文彬,洪业汤,陈旭辉,等.未来气候变化对旱田生态系统 N₂O释放的潜在影响 [J].中国环境科学,1999,19(5):387-391.
 - Xu W B, Hong Y T, Chen X H, et al. The potential effects of climate changes in future on N₂O emission from agricultural soil [J]. China Environmental Science, 1999, 19(5): 387-391. (in Chinese)