豫州褐壳蛋鸡Ⅲ系部分数量性状遗传参数的估测

宋素芳1, 康相涛2, 黄修奇3, 王彦彬2, 李明2

(1 郑州牧业工程高等专科学校,河南 郑州 450008; 2 河南农业大学,河南 郑州 450002; 3 商丘农业学校,河南 商丘 476000)

[摘 要] 用父系半同胞组内相关法,对豫州褐壳蛋鸡III系四世代的部分数量性状的遗传参数进行了估测与分析,结果发现: 开产日龄遗传力为 0 324 1,40 周龄蛋重的遗传力为 0 349 3,体重的遗传力为 0 413 9~ 0 461 2,产蛋量遗传力为 0 259 4~ 0 383 5;40 周龄产蛋量和 72 周龄产蛋量之间的遗传相关系数为 0 591 6,开产日龄与72 周龄产蛋量间的遗传相关系数为-0 594 3,开产日龄与40 周龄及 72 周龄体重的遗传相关系数分别为 0 420 4和 0 797 1。

[关键词] 豫州褐壳蛋鸡;数量性状;遗传参数 [中图分类号] S831.2 [文献标识码] A

[文章编号] 1671-9387(2003)01-0121-03

豫州褐壳蛋鸡III系是在罗斯蛋鸡CD 系的基础上,经过系统选育,培育出的具有外貌一致,遗传性能稳定、生活力强、产蛋性能好的褐壳蛋鸡纯系。近年来与本场培育的其他纯系进行了配合力测定,发现 I × III杂交组合[1]在开产日龄、产蛋量、蛋重及蛋品质等方面均表现出较高的优势率,且该组合可公母羽色自别雌雄,自别率理想[2]。这表明III系作为豫州褐壳商品代蛋鸡高产品种的配套系,具有广泛的应用前景。畜禽主要数量性状的遗传参数,是育种工作中进行间接选择的依据,本研究拟对豫州褐壳蛋鸡III系四世代的部分数量性状进行遗传分析,以便为今后的育种工作提供可靠依据。

1 材料与方法

材 料 取自河南农业大学种鸡站培育的豫州 褐壳蛋鸡Ⅲ系四世代个体记录群原始记录。

方 法 剔除原始记录中死淘个体以及数量性

状记录不全个体。用系统分组法对资料进行整理,用 父系半同胞组内相关法估测遗传参数^[3,4]。

2 结果与分析

2 1 部分数量性状表型参数统计结果

豫州褐壳蛋鸡III系部分数量性状的表型参数统计结果见表 1。由表 1 可知,豫州褐壳蛋鸡III系主要性状的表型值为: 开产日龄 160 74 d,开产体重1 548 31 g,40 周龄蛋重 57.38 g,72 周龄蛋重61.52 g,72 周龄蛋量241.29 枚。而育种指标为: 开产日龄 160 d,开产体重1 700~1 800 g,蛋重55~58 g,产蛋量225~230 枚。可见,豫州褐壳蛋鸡III系各部分数量性状的表型值与育种指标基本吻合。产蛋量超过育种指标 11 枚以上,但开产体重偏低,今后在豫州褐壳蛋鸡III系育种工作中,应对开产体重的提高给予足够重视。

表 1 豫州褐壳蛋鸡!!!系部分数量性状的表型参数统计结果

Table 1 Phenotypic parameters of some quantitative characters in strian III of Yuzhou egg-brown layer

项目 Item	开产 First egg			40 周龄 40 w eek			72 周龄 72-w eek		
	日龄/d A ge	蛋重/g Eggweight	体重/g Body weight	蛋重/g Egg weight	体重/g Body weight	蛋量/枚 Produc - tion	蛋量/枚 Production	体重/g Body weight	蛋重/g Egg weight
平均数 A verage	160 74	36 13	1 548 31	57. 38	1 737. 16	87. 91	241. 29	1 942 62	61. 52
标准差 Standard deviation	11. 28	2 70	160 59	3 54	156 32	13 93	27. 37	219. 05	4 16
标准误 Standard error 变 异 系 数	0 67	0 16	9. 60	0 21	9 34	0 83	1. 64	13 09	0 25
受弃 款 数 Coefficient of	7. 02	7. 42	10 36	6 16	9 00	15 84	11. 34	11. 28	6 76

2 2 **豫州褐壳蛋鸡III系部分数量性状的遗传参数** 豫州褐壳蛋鸡III系部分数量性状的遗传力见表 (r_{a}) 、表型相关系数 (r_{a}) 、表型相关系数 (r_{b}) 和环境相关系数 (r_{e}) 见表 3。

河南省重点科技攻关项目(941040600)

[作者简介] 宋素芳(1963-), 女, 河南伊川人, 副教授, 硕士, 主要从事生物统计及遗传育种教学与研究工作。

^{* [}收稿日期] 2002-09-05

表 2 豫州褐壳蛋鸡!!!系部分数量性状的遗传力

Table 2 The heritability of some quantitative characters in strain III of Yuzhou egg-brown layer

数量性状 Quantitative characters	遗传力 Heritability	数量性状 Quantitative characters	遗传力 Heritability
开产日龄 A ge at first egg	0 324 1	40 周蛋量 40-w eek egg production	0 259 4
40 周龄蛋重 40 week egg weight	0 349 3*	72 周龄蛋量 72 week egg production	0 383 5*
40 周龄体重 40 week body weight	0 461 2*	72 周龄体重 72 w eek body w eight	0 413 9*

注: * 表示 P < 0.05。Note: * means P < 0.05.

表 3 豫州褐壳蛋鸡 \coprod 系部分数量性状间的遗传相关系数 (r_a) 、表型相关系数 (r_a) 和环境相关系数 (r_E)

Table 3 The genetic (r_A) , phenotypic (r_p) and environment correlation (r_E) of some quantitative characters in strain III of Yuzhou Egg-Brown Layer

数量性状 Quantitative characters	r_A	r_p	r_E	数量性状 Quantitative characters	$r_{\!A}$	r_p	r_E
开产日龄与 40 周龄体重 A ge at first egg w ith 40 week body weight	0 420 4	0 111 2	- 0 085 0	开产体重与 40 周龄蛋重 Body weight at first egg w ith 40 week egg weight	0 501 5	0 020 6	- 0 116 2
开产日龄与 72 周龄体重 A ge at first egg w ith 72 week body weight	0 797 1**	0 052 4	- 0 380 9	40 周龄体重与 72 周龄蛋重 40 w eek body w eight w ith 72 w eek egg w eight	0 261 2	0 179 1*	0 209 6
开产日龄与 72 周龄蛋量 A ge at first egg w ith 72-w eek egg p roduction	- 0 594 3* -	0 232 3**	- 0 035 3	开产蛋重与 40 周龄蛋量 Egg weight at first egg w ith 40~week egg production	- 0 441 5	- 0 190 6* *	- 0 160 6
40 周龄蛋量与 72 周龄蛋量 40-week egg production with 72-week egg production	0 591 6*	0 537 8**	0 519 6	开产体重与 40 周龄蛋量 Body weight at first egg w ith 40-week egg production	- 0 249 7	- 0 073 5	- 0 033 8
40 周龄蛋重与 40 周龄体重 40¬w eek egg w eight w ith 40¬w eek body w eight	0 718 3**	0 303 5**	0 025 6	40 周龄蛋重与 72 周龄蛋量 40 w eek egg w eight w ith 72 w eek egg p roduction	- 0 226 0	0 023 4	0 167 4
72 周龄体重与 72 周龄蛋重 72-week body weight with 72-week egg weight	0 464 3	0 146 6*	0 133 6	40 周龄体重与 72 周龄蛋量 40 w eek body w eight w ith 72 w eek egg p roduction	- 0 337 8	0 119 9	0 454 5

注: *表示 P< 0 05; * *表示 P< 0 01。Note: * means P< 0 05; * * means P< 0 01。

2 2 1 豫州褐壳蛋鸡III系部分数量性状的遗传力特点 从表 2 可以看出,豫州褐壳蛋鸡III系部分数量性状的遗传力,以 40 周龄体重和 72 周龄体重最高(0 41~ 0 46); 开产日龄、40 周龄蛋重和 72 周龄蛋量居中(0 32~ 0 38); 40 周龄蛋量最低(0 26)。

开产日龄遗传力。开产日龄遗传力为0 324 1,高于滨白 II 系的 0 244^[5]、京白 I 系六世代的 0 209^[6]、青岛来航鸡的 0 246,与京白III系二世代的 0 30^[7]、崔道枋等^[8]报道的京白 I 系的0 312 9、京白 II 系的 0 373 3^[6]较为相似,但低于成都白鸡的 0 563~ 0 63^[9,10]。

蛋重遗传力。40 周龄蛋重的遗传力为 0 349 3, 近似于滨白 II 系的 0 358^[5], 京白 III 系二世代的 0 32^[7]; 低于京白 I、II 系六世代的 0 501, 0 492^[6], 成都白鸡的 0 458^[9], 崔道枋等^[8]报道的京白 I 系 0 490 0 和京白 II 系的 0 456 5.

体重的遗传力。40 周龄体重的遗传力为0 461 2,高于滨白 II 系的0 $242^{[5]}$,京白 I 系六世代的0 $343^{[6]}$;低于京白 III 系二世代0 $56^{[7]}$,崔道枋等^[8]报道的京白 I、II 系的0 561 6,0 582 0,京白 III 系六世代的0 $56^{[7]}$ 。72 周龄体重的遗传力为0 413 9.与崔道枋等^[8]报道的京白 I、II 系的

0.4853,0.4858接近。

产蛋量遗传力。40 周龄产蛋量的遗传力为 0 259 4,与滨白II系的 0 244^[5],京白III系二世代的 0 22,京白 I 六世代的 0 212^[6],郑州红育鸡的 0 23^[11]等均较为接近;但低于京白III系六世代的 0 362,成都白鸡的 0 33~ 0 354^[11,12]。72 周龄产蛋量 的遗传力为 0 383 5,高于郑州红育鸡的 0 268^[11],成都白鸡的 0 $10^{[10]}$ 以及崔道枋等^[8]报道的京白 I、II系的 0 200 4,0 207 6,但低于Thak等报道的 0 $43^{[8]}$ 。

2 2 2 豫州褐壳蛋鸡III系部分数量性状的遗传相关 遗传相关反映了性状育种值之间的真实联系, 是育种工作中间接选择的依据。由表 3 可以看出: 豫州褐壳蛋鸡III系 40 周龄产蛋量和 72 周龄产蛋量之间的遗传相关与表型相关分别为 0 591 6, 0 537 8, 均呈中等程度的正相关, 且差异均达显著水平。因此, 在育种工作中, 可以用 40 周龄的产蛋量作为提高全年产蛋量的早期选择指标。 开产日龄与 40 周龄及 72 周龄体重的遗传相关系数分别为 0 420 4 和 0 797 1, 皆为较高的正相关; 而开产日龄与 72 周龄产蛋量间的遗传相关系数与表型相关系数分别为-0 594 3 和-0 232 3, 均呈显著的负相

关。故将开产日龄作为早期选择的一项重要指标,可以选育出体型小,产蛋多的品系。由于蛋重、体重和开产日龄与产蛋量之间呈负遗传相关,蛋重与体重间呈正相关,而当产蛋量一定时,蛋重与总蛋重(产蛋量×蛋重)呈正相关。所以,要选育出一个总蛋重高而且体型较小的理想蛋鸡品系,必须根据选育目标恰当利用各种相应的遗传参数,再制订出合适的选择指数。在豫州褐壳蛋鸡III系的选育过程中,本研究选取开产日龄、40周龄蛋量、40周龄蛋重3项指标制订综合指数,进行早期选择,取得了满意的效果。

3 结论与讨论

1) 豫州褐壳蛋鸡III系经过 4 年的选育, 已经具备自身相对恒定的遗传参数, 在育种时, 不能盲目引

用其他鸡种的参数。可依据自身特有的遗传参数制 定综合选择指数对其进一步选育和提高。

- 2)在豫州褐壳蛋鸡III系的育种工作中,可以用 40 周龄的产蛋量作为提高全年产蛋量的早期选择 指标。以缩短世代间隔,加速育种进展。
- 3) 将开产日龄作为豫州褐壳蛋鸡III系早期选择的一项重要指标, 可以选育出体型小 产蛋多的品系。
- 4) 在豫州褐壳蛋鸡III系的选育过程中, 选取开产日龄、40 周龄蛋量、40 周龄蛋重 3 项指标制订综合指数, 进行早期选择, 取得了满意的效果。
- 5) 对遗传力进行显著性检验, 结果表明, 开产日龄(0 324 1) 和 40 周龄蛋量(0 259 4), 均未达显著水平(P>0 05), 这可能是由于样本偏小的缘故。

[参考文献]

- [1] 康相涛, 赖银生, 王俊士, 等. 豫州褐壳蛋鸡不同品系间的配合力测定[J]. 河南农业大学学报, 1994, 28(3): 262-268
- [2] 康相涛, 赖银生, 王俊士, 等。豫州 913 蛋鸡亲本不同羽色类型对子代雏鸡自别雌雄准确率的影响[J]. 华北农学报, 1995, 10(2): 116-119
- [3] 吴常信 混合家系亲缘相关公式的几种形式与应用[J]. 北京农业大学学报, 1985, (3): 345-354
- [4] 吴仲贤 统计遗传学[M] 北京: 科学出版社, 1979.
- [5] 李 辉, 张德祥. 鸡育种研究[M]. 哈尔滨: 东北林业大学出版社, 1996 32-36
- [6] 张海兰 北京白鸡 I, II系育成报告[A] 北京畜牧局 北京白鸡纯系与配套系育成论文报告集[C] 北京: 科学出版社, 1986 37- 50
- [7] 张 劳 北京白鸡Ⅲ系部分数量性状的遗传分析[A] 北京畜牧局 北京白鸡纯系与配套系育成论文报告集[C]. 北京: 科学出版社, 1986 115- 120
- [8] 崔道枋, 段章雄, 程光潮 蛋鸡主要经济性状遗传参数的估测——来航京白 I、II系[J] 家禽, 1982, (3): 1-3.
- [9] 王林全 成都白鸡某些性状遗传力的几种估测方法的比较[1]. 遗传, 1994, (4): 25-27.
- [10] 程济东, 邱祥聘 成都白鸡数量性状遗传参数的初步估测[1] 四川农业大学学报, 1986, (1): 29, 33
- [11] 朱振华, 魏彩潘 郑州红育鸡育成报告[R]. 河南郑州: 河南省农业科学院畜牧兽医研究所, 1987. 47-53.

Estimate of genetic parameters of some quantitative characters in strain III of Yuzhou Egg-Brown Layer

SONG Su-fang¹, KANG Xiang-tao², HUANG Xiu-qi³, WANG Yan-bin², LIM ing²

(1 Zhengzhou College of A nim al H usband ry Engineering, Zhengzhou, H enan 450008, China; 2 H enan A g ricultural University, Zhengzhou, H enan 450002, China; 3 S hangqiu A g ricultural S chool, S hangqiu, H enan 76000, China)

Abstract: Genetic parameters of major quantitative characters about the fourth generation in strain III of Yuzhou egg-brown layers were estimated using paternal half-sib intra-class correlation. The result showed that the heritability of age at first egg, the heritability of 40-week egg weight is 0 324 1 and 0 349 3, respectively, the heritability of body weight and the heritability of egg production ranges from 0 413 9 to 0 461 2 and from 0 259 4 to 0 383 5; the genetic correlation coefficient of 40-week egg production with 72-week egg production, age at first egg with 72-week egg production is 0 591 6 and - 0 594 3, that of age at first egg with 40-week and 72-week body weight is 0 420 4 and 0 797 1.

Key words: Yuzhou egg-brown layer; quantitative character; genetic parameter