引用本文:
【打印本页】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 563次   下载 762 本文二维码信息
码上扫一扫!
分享到: 微信 更多
一种改进的线性支持向量机的特征筛选算法
张 阳1, 刘永革2, 景 旭1
1.西北农林科技大学 信息工程学院;2.安阳师范学院 计算机科学系
摘要:
针对SVM法线特征筛选算法仅考虑法线对特征筛选的贡献,而忽略了特征分布对特征筛选的贡献的不足,在对SVM法线算法进行分析的基础上,基于特征在正、负例中出现概率的不同提出了加权SVM法线算法,该算法考虑到了法线和特征的分布。通过试验可以看出,在使用较小的特征空间时,与SVM法线算法和信息增益算法相比,加权SVM法线算法具有更好的特征筛选性能。
关键词:  特征筛选  支持向量机  加权SVM法线算法  文本分类
DOI:
分类号:
基金项目:西北农林科技大学人才基金项目(01140401;01140402)
An improved feature selection algorithm for linear SVM classifiers
Abstract:
SVM normal feature selection algorithm only considers the contribution made to feature selection by the normal,ignoring the contribution made by the distribution of features totally.In this paper,based on the analysis of SVM normal algorithm,and the difference between the probability that attributes occurs in positive and negative samples,a weighed SVM normal algorithm,which considers both the distribution and the normal was presented.The experiment results show that,compared with SVM normal algorithm and information gain algorithm,when a small feature space is applied,the weighed SVM normal algorithm has better feature selection performance than SVM normal algorithm and information gain algorithm.
Key words:  feature selection  SVM  weighed SVM normal algorithm  text categorization