宁夏青铜峡灌区农区非农区的水盐均衡研究

韩宇平

(华北水利水电学院,河南郑州 450011)

[摘 要] 【目的】研究宁夏引黄灌区的水盐均衡情况,为灌区中低产田改造和水盐调控提供科学依据。【方法】将灌区分为农区、非农区、水域3部分,采用建立的农区-非农区-水域水分转化与均衡模型,研究宁夏青铜峡灌区的水盐运移与转化的关系。【结果】2000年进入灌区的水量包括灌区降水5.04亿m³和引黄灌溉60.29亿m³。灌区水分消耗和转化各项中,农区地面蒸发量为23.41亿m³,非农区地面蒸发量为5.45亿m³,水域蒸发量为4.21亿m³,农区向水域地下水迁移量为3.12亿m³,农区向非农区地下水迁移量为3.68亿m³;2000年青铜峡灌区农区总进盐量为268.68万t,总排盐量为444.43万t,即灌区耕地当年总脱盐量为175.75万t。灌区排出耕地的盐量由3部分组成:通过耕地排水排出的盐量为342.43万t,占总排盐量的77.05%;通过农区向非农区的地下水迁移排出的盐量(水域积盐量)为55.20万t,占总排盐量的12.42%。说明盐荒地和水域的旱排能力相当重要。【结论】探明了灌区水盐平衡与转化规律,灌区非农区和水域对灌区排盐具有重要作用。

[关键词] 宁夏引黄灌区;农区;非农区;水域;水盐均衡 [中图分类号] S273 [文献标识码] A

[文章编号] 1671-9387(2009)11-0224-07

Study on the water and salt balance of farming areas and non-farming areas in Ningxia Qingtongxia irrigation area

HAN Yu-ping

(North China University of Water Conservancy and Electric Power, Zhengzhou, Henan 450011, China)

Abstract: [Objective] To provide scientific basis for transformation of low-yielding fields and regulating water and salt, the water and salt balance in the Ningxia Yellow river irrigation area was studied. [Method] First, the irrigation area was divided into farming areas, non-farming areas and water areas; secondly, the water balance model of farming areas, non-farming areas and water areas was established, and the water salt movement, transforming relations of the Qingtongxia irrigation area in Ningxia was researched. [Result] In 2000, the amount of water entering the irrigation area, including precipitation and the Yellow River water, was 5.04×10^8 m³ and 60.29×10^8 m³ respectively. Water consumption and transformation in the irrigation were as follows; ground evaporation in farming area was 2.341×10^9 m³, surface evaporation in non-farming area was 5.45×10^8 m³, evaporation in water area was 4.21×10^8 m³, groundwater in farming areas migrating to the water area of 3.12×10^8 m³, groundwater in farming area migrating to non-farming area of 3.68×10^8 m³, the salt access of the farming area in Qingtongxia irrigation district in 2000 $2.686.8 \times 10^3$ t, and the total drainage salt $4.444.3 \times 10^3$ t, that is, the total desalination capacity of farmland in irrigation area was $1.757.5 \times 10^3$ t. The drainage salt from farmland in irrigation area consisted of three parts: (1) the salt from farmland drainage reached $3.424.3 \times 10^3$ t, 77.05% of the total; (2) The migration

[作者简介] 韩宇平(1975-),男,宁夏彭阳人,高级工程师,博士后,主要从事生态水文研究。E-mail: hanyp@ncwu.edu.cn

^{* [}收稿日期] 2009-03-03

[[]基金项目] 国家水体污染控制与治理科技重大专项(2008ZX07209-002);水利部公益性行业专项经费项目(200801015)

salt with groundwater from farming areas to non-farming areas was 468×10^3 t, 10. 53% of the total; (3) the migration salt with groundwater from farming areas to water areas was 552×10^3 t, 12. 42% of the total. So the desalination capacity of the farmland areas and water areas is indispensable. [Conclusion] The rules of water and salt balance and transformation are found, and it shows the non-farming areas and water areas drainage salt play an important role.

Key words:Ningxia Yellow River irrigation district; farming area; non-farming area; water area; water and salt balance

宁夏引黄灌区南起中卫县沙坡头,北至石嘴山, 长 320 km,东西宽 40 km,属黄河冲积平原,灌溉 11 个市县及15个国营农林牧场,灌溉面积35万hm², 其中以青铜峡为界,南部为卫宁灌区,属无坝引水, 现有灌溉面积 5.3 万 hm²;北部为青铜峡灌区,灌溉 面积 28.3 万 hm²。宁夏引黄灌区年降水量仅180~ 200 mm,降水量小,且时空分布极不均匀,而该区域 年均水面蒸发量则达到了1000~1400 mm,是降 水量的7倍多[1-3]。位于西北内陆地区的引黄灌区, 其土壤盐碱化问题一直是制约灌区农业生产的主要 因素之一。宁夏引黄灌区(特别是银北灌区)土壤盐 碱化问题是自然与人为两方面因素综合作用的结 果,而这两方面因素的相互交叉、制约和叠加,必然 持续不断地改变着灌区水盐循环的过程和态势[4-5]。 对于宁夏引黄灌区而言,应尽量少引黄河水,以使灌 区保持持续的脱盐进程,才能使有限的水资源可以 支撑区域经济、社会可持续发展和生态环境的持续 改善。为此,查明灌区水盐平衡与转化规律,确定灌 区保持土壤脱盐的合理水量排引比值,对解决灌区 土壤盐碱化调控问题有重要意义。

关于灌区水盐均衡问题、灌区总体盐分平衡问 题、灌区有害盐分平衡问题、基于有害盐分的灌区合 理排引比值问题、灌区的干排水问题,前人已经作过 许多研究,取得了一些有价值的认识和成果^[6-8],但 是关于灌区内部水盐在农区、非农区、水域之间的转 化运移规律研究则不多,至于在宁夏引黄灌区开展 的相关研究更是鲜见报道。为此,本试验对宁夏青 铜峡灌区农区、非农区水盐平衡进行定量分析,研究 内陆干旱地区引黄灌区的水盐转化规律,旨在为灌 区中低产田改造和水盐调控提供决策依据。

1 灌区农区非农区水分转化与均衡

每年引入灌区的大量地表水以及降入到农区的 雨水,首先主要在农区进行转化和消耗,地表水第一 步转化为土壤水,土壤水因蒸发蒸腾而转化为大气

水,同时亦通过下渗而转化为地下水。非农区的蒸 发蒸腾消耗来源,主要是降入到非农区的雨水以及 非农区的潜水蒸发。而非农区地下水的补给来源, 一部分为非农区降水的入渗,一部分为农区地下水 向非农区的迁移。水域的水面蒸发消耗来源,一是 降入到水域的雨水,二是农区地下水向水域的迁移。 参考文献[9-11],本研究建立了宁夏引黄灌区农区-非农区-水域水分转化与均衡模型(图 1),其中,Pw、 P。、P。分别为水域降水量、农区降水量、非农区降水 量, ET_w 、 ET_c 、 ET_s 、 ET_{ch} 、 ET_{dr} 分别为水域蒸发量、 农区地面蒸发蒸腾量、非农区地面蒸发蒸腾量、渠系 蒸发量和排水沟蒸发量,Qc、Qa、Qa分别表示地下水 开采量、渠系渗漏补给量和田间入渗补给量,Q_{cis}、 Q_{sis}分别为农区降水入渗量、非农区降水入渗量, ET_{cg}、ET_{sg}分别为农区潜水蒸发量和非农区潜水蒸 发量,Q_v,Q_{sd},Q_{ed}分别为渠系引水量、地表退水量和 地下水排泄量,Q_{cwg}、Q_{csg}分别为农区向水域地下水 迁移量和农区向非农区地下水迁移量。

1.1 农区水均衡

以年为均衡时段,忽略土壤贮水量的蓄变量,即 近似认为一年内土壤贮水量的蓄变量为0。由此, 根据农区土壤水均衡可以得到:

 $(Q_y + P_c + ET_{eg}) - (ET_C + ET_{ch} + ET_{dr} +$

$$Q_{sd} + Q_{cjs} + Q_{qs} + Q_{ts}) = 0$$
 (1)

由式(1)可估算出农区的地面蒸发蒸腾量 *ET_c*。 1.2 **非农区水均衡**

与农区水均衡计算类似,以年为均衡时段,忽略

 $(P_s + ET_{ss}) - (ET_s - Q_{sjs}) = 0$ 。 (2) 由式(2)可计算出非农区地面蒸发蒸腾量 ET_s 。

根据非农区地下水均衡可以得到:
$$(Q_{sjs} + Q_{cg}) - ET_{sg} = 0$$
。(3)

由上式可求出农区向非农区地下水迁移量 Qog 。

1.3 水域水均衡

根据水域水均衡可以得到:

$$(P_w + Q_{cwg}) - ET_w = 0. \tag{4}$$

由上式可求出农区向水域的地下水迁移量,即 Q_{cwg}。

1.4 青铜峡灌区水均衡计算

为求农区向非农区和水域的地下水迁移量,首 先应计算农区、非农区的潜水蒸发量和水域水面蒸 发量,潜水蒸发量可以采用公式(5)计算:

 $C_{c}Q_{601}F_{c}+\sigma C_{c}Q_{601}F_{s}=ET_{G}F$ (5) 式中: C_{c} 为农区潜水蒸发系数; σC_{c} 为非农区潜水蒸 发系数,其中 σ 为非农区的潜水蒸发系数与农区潜水蒸发系数的比值,本研究中 σ 取值为 0.8; Q_{601} 为 E601型蒸发皿水面蒸发量,mm; F_c 、 F_s 、F分别为农 区面积、非农区面积和灌域总面积,km²; ET_G 为灌 域总的潜水蒸发量,mm。由各分区的潜水蒸发系数和水面蒸发量,可分别计算出各分区的潜水蒸发量,即 ET_{sc} 和 ET_{sc} 。

由于潜水蒸发系数与地下水位关系密切(图 2),故本研究中借鉴文献[12]来确定农区潜水蒸发系 数,即根据灌区地下水位确定相应的潜水蒸发系数。

图 2 灌区潜水蒸发系数与地下水位的关系 Fig. 2 Relationship between groundwater level and evaporation coefficient

227

为计算潜水蒸发量和水域水面蒸发量,首先应 得到灌区农区、非农区和水域的面积。本研究根据 青铜峡灌区土地利用图,确定灌区农区、非农区及水 域面积,考虑到盐分从灌区农区向非农区迁移的可 能性,在各类土地利用统计中重点考虑冲洪积平原 地带,而对山前洪积倾斜平原不予考虑,利用 GIS 工具,对青铜峡灌区 2000 年有盐分联系的土地利用 情况进行归类[13]。在土地利用归类中,农区主要指 平原水田,陆地植被包括有林地、灌木林、疏林地及 其他林地、高覆盖度草地、中覆盖度草地、低覆盖度 草地、平原旱地等,水域包括河渠、湖泊、水库坑塘、 滩地、沼泽,无植被荒地包括农村居民点、其他建设 用地、沙地、盐碱地和裸土地。为计算方便,将陆地 植被和无植被荒地合并为非农区。GIS 统计结果表 明,青铜峡灌区农区土地面积为 37 万 hm²,非农区

面积 23.7 万 hm²,水域面积 3.9 万 hm²。

在得到农区、非农区、水域面积后,参考灌区各 年的气象资料,可知青铜峡灌区地下水位埋深值(图 3),根据全年不同月份的平均地下水埋深可以推算 出当月的平均潜水蒸发系数。计算表明,2000年青 铜峡灌区 1~12 月的潜水蒸发系数分别为 0.05, 0.02,0.02,0.02,0.19,0.29,0.27,0.32,0.22, 0.10,0.26 和 0.15,全年平均为 0.12。至此可以采 用公式(5)计算灌区农区、非农区的潜水蒸发量,结 果表明,2000年青铜峡灌区总的潜水蒸发量为 12.50亿 m³,其中农区潜水蒸发量为 9.13 亿 m³,非 农区潜水蒸发量为 3.37 亿 m³。2000 年灌区的水 面蒸发量为1078.6 mm,据此可以计算出当年青铜 峡灌区水域水面蒸发量为 4.21 亿 m³。

图 3 不同年份宁夏青铜峡灌区地下水位埋深的年内变化

Fig. 3 Change of groundwater during the year in Qingtongxia irrigation district for different years 采用水均衡法,计算灌区农区、非农区的地面腾 发量及农区向非农区、水域的地下水迁移量时,需要 计算诸多水均衡项,其中计算降水入渗量时需得到

降水入渗补给系数,而宁夏青铜峡灌区降水入渗补 给系数与地下水位埋深的关系见图 4。

Relationship between precipitation infiltration coefficient and groundwater depth Fig. 4

in Ningxia Qingtongxia irrigation district

在水均衡项中,渠系渗漏和田间入渗也是重要 的输入项,这两项的计算需要考察灌区的灌溉入渗 系数和渠系渗漏补给系数。青铜峡灌区平均灌溉入 渗系数和渠系渗漏补给系数取值均为 0.21^[14]。 2000年,宁夏青铜峡灌区农区地面蒸发蒸腾量各均 衡项的计算值见表 1。

表 1 2000 年宁夏青铜峡灌区农区的水量平衡项计算值

Table 1 Irrigation water balance in farmland areas in 2000 in Ningxia Qingtongxia irrigation district 🛛 🛽 🗛

引水量 Irrigation water	降水量 Precipitation	潜水蒸发量 Groundwater evaporation	渠系蒸发量 Channels evaporation	排水沟蒸发量 Drains evaporation
60.29	5.04	9.13	0.13	0.07
地表退水量 Surface water withdrawal	农区降水人渗量 Infiltration of precipitation in farmland areas	渠系渗漏量 Channels leakage	田间人渗量 Infiltration in farmland	农区地面蒸发蒸腾量 Ground evapotranspiration in farmland areas
27.65	0.53	12.66	10.00	23.41

由 1.1~1.4 的各均衡方程,可计算出各分区地 下水迁移量(表 2)。

面蒸发蒸腾量以及农区向非农区、农区向水域的地

表 2 2000年宁夏青铜峡灌区农区、非农区潜水蒸发量的估计值

Table 2 Groundwater evaporation in farmland areas and non-farm areas in 2000 in

Ningxia Qingtongxia irrigation district

亿 m³

(7)

农区地面	非农区地面	水域	农区向水域地下水	农区向非农区地下水
蒸发量	蒸发量	蒸发量	迁移量	迁移量
<i>ET_c</i>	<i>ET</i> 。	<i>ET</i> w	Q_{cwg}	Q _{csg}
23.41	5.45	4.21	3.12	3.68

2 灌区农区非农区盐分转化与均衡

如果将降水带入的盐量忽略不计,则灌区农区 的总进盐量为随引入灌区的总灌溉水量而进入的盐 量,灌区排出耕地的盐量由3部分组成:通过耕地排 水排出的盐量、通过农区向非农区地下水迁移排出 的盐量(即非农区干排水积盐量)、通过农区向水域 地下水迁移排出的盐量(即水域积盐量)。

灌区内农区的盐分均衡方程为:

$$\Delta S = S_i - (S_c + S_s + S_w) \quad (6)$$

式中: ΔS 为灌区内农区的盐分变化量; $S_i = V_i \cdot C_i$, 其中 S_i 为灌区总进盐量, V_i 为引入灌区的总灌溉 水量, C_i 为灌溉水的矿化度; S_c 为农区(耕地)排水 排盐量; S_i 为非农区(盐荒地)干排水积盐量; S_w 为 水域积盐量。

2.1 农区(耕地)排水排盐量

农区(耕地)排水排盐量 Se 可通过下式计算:

式中:*V_d* 为灌区排出的总水量,*C_d* 为排水的矿化度。

 $S_c = V_d \cdot C_d$

2.2 非农区干排水积盐量

非农区干排水积盐量 S。可通过下式计算:

$$\mathbf{S}_{s} = \boldsymbol{Q}_{csg} \cdot \boldsymbol{C}_{c} \quad (8)$$

式中:Q_{sg}为农区向非农区(盐荒地)的地下水迁移量;C_c为农区地下水的矿化度。

2.3 水域积盐量

水域积盐量 S_w 可通过下式计算:

$$S_w = Q_{cwg} \cdot C_c \, . \tag{9}$$

式中:*Q_{cug}*为农区向水域的地下水迁移量,*C_c*为农区 地下水的矿化度。

2.4 青铜峡灌区盐均衡计算

在获得灌区农区、非农区水分均衡与转化关系 后,可根据上述盐分均衡方程求得各类分区的排水 排盐量(表 3)。

灌区地下水矿化度为 0.8~10 g/L,其中矿化度小

表 3 2000 年宁夏青铜峡灌区各分区盐分均衡计算结果

I able 3 Salt balance in 2000 in Ningxia Qingtongxia irrigation district					万 t	
农区总进盐量 S_i	农区(耕地)排水 排盐量 S_c	非农区干排水 积盐量 <i>S</i> 。	水域积盐量 S_w	农区总排盐量 Total salt drainage from farmland areas	农区(耕地) 盐分余缺 Salt surplus and deficiency in farmland areas	
268.68	342.43	46.80	55.20	444.43	-175.75	
根据有关资	料,2000年青铜峡灌	护区总排水量为	$mg/L^{[13]}$ 。需要	要说明的是,在计算	非农区和水域积	
34.46亿m ³ ,排	水平均离子量为 994	mg/L,灌区当	盐量时,要求有	与灌区地下水矿化度	E 的资料。青铜峡	

年引水总量为 60.29 亿 m³,引水离子总量为 446

于1g/L的地下水,主要分布在山前倾斜平原、银南 河西的部分地区、河东地区吴忠的西部;矿化度为 1.0~2.0g/L的地下水分布最广,主要分布在河东 灌区、河西银南灌区、河西银北灌区大部、永宁四乡、 银郊及平罗、惠农、贺兰以东局部地区;矿化度大于 3g/L的地下水,主要分布在银北地区的三排流域 及银南河东地区的吴忠东南部、灵武北部^[15-16]。本 研究地下水矿化度取值为1.5g/L,将其作为农区 地下水矿化度进行计算。

从表 3 可以看出,灌区灌溉引用的黄河水全部 集中在耕地,即进入灌区的盐分全部分布在耕地。 2000年,灌区农区(耕地)总进盐量为 268.68万t, 总排盐量为 444.43万t,即灌区当年总脱盐量为 175.75万t,本年度耕地处于脱盐状态。排出农区 的总盐量由通过耕地排水排出的盐量、通过农区向 非农区的地下水迁移排出的盐量、通过农区向水域 的地下水迁移排出的盐量 3 部分组成。2000年农 区总计排盐量 444.43万t,其中耕地排水排盐量为 342.43万t(占77.05%),非农区干排水积盐量为 46.80万t(占10.53%),水域积盐量为 55.20万t (占12.42%)。由此可知,盐荒地及水域的旱排能力 不容忽视。

3 结 论

根据宁夏引黄灌区水土资源利用的特点,本研 究建立了农区-非农区-水域水分转化与均衡模型, 该模型反映了农区、非农区、水域各自的水分转化关 系,特别是农区、非农区和水域的水分迁移关系。应 用该模型对灌区水分与盐分在农区、非农区和水域 的迁移转化规律进行定量分析研究,结果表明:

(1)2000 年进入灌区的水量包括灌区降水 5.04 亿 m³ 和引黄灌溉 60.29 亿 m³。灌区水分消耗和转 化各项中,农区地面蒸发量为 23.41 亿 m³,非农区 地面蒸发量为 5.45 亿 m³,水域蒸发量为 4.21 亿 m³,农区向水域地下水迁移量为 3.12 亿 m³,农区 向非农区地下水迁移量为 3.68 亿 m³。

(2)2000 年青铜峡灌区农区(耕地)总进盐量为 268.68 万 t,总排盐量为 444.43 万 t,即灌区耕地当 年总脱盐量为 175.75 万 t。灌区排出耕地的盐量 由 3 部分组成:通过耕地排水排出的盐量为 342.43 万 t,占总排盐量的 77.05%;通过农区向非农区的 地下水迁移排出的盐量,即非农区干排水积盐量为 46.80 万 t,占总排盐量的 10.53%;通过农区向水 域地下水迁移排出的盐量,即水域积盐量为 55.20 万 t,占总排盐量的 12.42%。

[参考文献]

 [1] 孙 静,阮本清,蒋任飞.宁夏引黄灌区参考作物蒸发蒸腾量及
 其气候影响因子的研究 [J].灌溉排水学报,2006,25(1):54-58.

Sun J, Ruan B Q, Jiang R F. Study on the crop reference evapotraspiration and the meteorological variables in the Yellow River irrigation area of Ningxia Region [J]. Journal of Irrigation and Drainage, 2006, 25(1):54-58. (in Chinese)

- [2] 史彦文,方树星,刘海峰,等. 宁夏引黄灌区水资源利用研究
 [J].人民黄河,2004,26(7):31-32.
 Shi Y W,Fang S X,Liu H F,et al. Study on water resources utilization in the Yellow River irrigation area of Ningxia Region
 [J]. Yellow River,2004,26(7):31-32. (in Chinese)
- [3] 孙素艳,张金萍,赵 勇. 宁夏引黄灌区蒸散发量的计算模拟
 [J]. 干旱区地理,2007,30(5):714-720.
 Sun S Y, Zhang J P, Zhao Y. Calculation and simulation of e-vaporation in Ningxia Plain area [J]. Arid Land Geography, 2007,30(5):714-720. (in Chinese)
- [4] 雍富强,刘学军. 宁夏引黄灌区沟水利用研究 [J]. 水资源保 护,2007,30(5):714-720.
 Yong F Q, Liu X J. Study on water in ditch utilization in the Yellow River irrigation area of Ningxia Region [J]. Water Resources Protection,2007,30(5):714-720. (in Chinese)
- [5] 余 美,芮孝芳. 宁夏盐碱地改良利用研究进展 [J]. 水利水电 科技进展,2006,26(6):85-90.
 Yu M,Rui X F. Advances in saline-alkali soil modified and utilization study of Ningxia Region [J]. Advances in Science and Technology of Water Resources, 2006, 26(6): 85-90. (in Chinese)
- [6] 马玉兰,眭克仁. 宁夏引黄灌区土壤盐渍化动态变化规律的研究与探讨 [J]. 宁夏农林科技,2006(4):35-37.
 Ma Y L,Gui K R. Study on dynamic change rules of soil-salinization in the Yellow River irrigation area of Ningxia Region [J]. Ningxia Agriculture and Forestry Technology, 2006(4): 35-37. (in Chinese)
- [7] 黄建成,陈国栋,李 鹏.宁夏引黄灌区土壤盐渍化现状与改良
 [J].水土保持研究,2008,15(6):256-258.
 Huang J C,Chen G D,Li P. Status and modified of soil-salinization in the Yellow River irrigation area of Ningxia Region [J].
 Research of Soil and Water Conservation, 2008, 15(6): 256-258. (in Chinese)
- [8] 李聪敏,王彦兵.宁夏引黄灌区耕地土壤盐渍化现状及影响因素调查研究[J].地下水,2007,29(3):41-44. Li C M, Wang Y B. Investigation and study on status and influence factors of soil-salinization in the Yellow River irrigation area of Ningxia Region [J]. Ground Water,2007,29(3): 41-44. (in Chinese)
- [9] 岳卫峰,杨金忠,高鸿永,等.内蒙河套灌区义长灌域水均衡分析 [J]. 灌溉排水学报,2004,23(6):25-28. Yue W F, Yang J Z, Gao H Y, et al. Study on the nechanism of

water balance in Yichang irrigation sub-district of Hetao irrigation district [J]. Journal of Irrigation and Drainage, 2004, 23 (6):25-28. (in Chinese)

- [10] 吐尔洪·牙生,朱卫东.以土壤水为中心的农区-非农区水均 衡模型 [J]. 新疆农业科学,2006,43(S1):117-120.
 Tuerhong Y S, Zhu W D. Water and salt balance model of farming areas and non-farming areas taking soil water for center [J]. Xinjiang Agricultural Science,2006,43(S1):117-120.
 (in Chinese)
- [11] 岳卫峰,杨金忠,童菊秀,等.干旱地区灌区水盐运移及平衡分析[J].水利学报,2008,39(5):623-627.
 Yue W F, Yang J Z, Tong J X, et al. Transfer and balance of water and salt in irrigation district of arid region [J]. Journal of Hydraulic Engineering,2008,39(5):623-627. (in Chinese)
- [12] 高正夏,谷江波,徐军海. 宁夏青铜峡河西灌区水文及水文地 质参数研究 [J]. 水资源保护,2003(2):14-17.
 Gao Z X,Gu J B,Xu J H. Study on hydrologic and hydrogeologic parameters for west irrigated areas of Qingtong Gorge of Ningxia [J]. Water Resources Protection,2003(2):14-17. (in

[13] 阮本清,韩宇平,蒋任飞.灌区生态用水研究 [M].北京:中国

水利水电出版社,2007.

Ruan B Q, Han Y P, Jiang R F. Study on ecological water consumption in irrigated areas [M]. Beijing: China Water Power Press, 2007. (in Chinese)

- [14] 张 黎,王 利,王红英,等. 宁夏地下水资源 [M].银川:宁夏人民出版社,2003.
 Zhang L, Wang L, Wang H Y, et al. Ground water resources of Ningxia Region [M]. Yinchuan: Ningxia People's Press, 2003. (in Chinese)
- [15] 方树星,魏礼宁,张学文,等. 青铜峡灌区盐碱化与水盐平衡分析研究[R].银川:宁夏水文水资源勘测局,2001.
 Fang S X, Wei L N, Zhang X W, et al. Study on saline-alkali and water-salt balance in Qingtong Gorge Irrigated Region [R]. Yinchuan: Ningxia Hydrographic and Water Resources Survey Bureau,2001. (in Chinese)

[16] 汪 林,甘 泓,王 珊,等. 宁夏引黄灌区水盐循环演化与调 控[M]. 北京:中国水利水电出版社,2003.
Wang L, Gan H, Wang S, et al. Evolution and regulation of water-salt cycle in the Yellow River irrigation area of Ningxia Region [M]. Beijing: China Water Power Press, 2003. (in Chinese)

(上接第 223 页)

Chinese)

- [13] 蔡培印.土地"疲劳症"的消除 [J].国土绿化,2002(7):34.
 Cai P Y. Eliminating the fatigue of land [J]. Land Greening, 2002(7):34. (in Chinese)
- [14] 孙 艳.温室土壤疲劳及其对蔬菜生长影响机理的研究 [D]. 陕西杨凌:西北农林科技大学,2007.
 Sun Y. The fatigue of greenhouse soil and its affection mechanism on the growth development of vegetable [D]. Yangling, Shaanxi; Northwest A&F University,2007. (in Chinese)
- [15] 王菊兰. 宁夏日光温室土壤性质变化规律的研究 [D]. 银川: 宁夏大学,2005.

Wang J L. Study on the change rules of soil properties in greenhouse [D]. Yinchuan: Ningxia University, 2005. (in Chinese)

- [16] 张志山,何明珠,谭会娟,等.沙漠人工植被区生物结皮类土壤的蒸发特性[J].土壤学报,2007,44(3):404-410.
 Zhang Z S, He M Z, Tan H J, et al. Evaporation from soils covered with biological crusts in revegetated desert [J]. Acta Pedologica Sinica,2007,44(3):404-410. (in Chinese)
- [17] 曹红霞,康绍忠,武海霞.同一质地(重壤土)土壤水分特征曲线的研究[J].西北农林科技大学学报:自然科学版,2002,30
 (1):9-12.

Cao H X, Kang S Z, Wu H X. Study on soil water characteris-

tic curves of soils of same quality (heavy loam) [J]. Journal of Nowthwest Sci-Tech University of Agriculture and Forestry: Nature Science Edition,2002,30(1):9-12. (in Chinese)

- [18] 夏卫生,刘贤赵,雷廷武. 土壤蒸发的动力学分析 [J]. 灌溉排 水,2001,20(3):17-19,32.
 Xia W S,Liu X Z,Lei Q W. Danamical analysis on soil evaporation [J]. Irrigation and Drainage,2001,20(3):17-19,32. (in Chinese)
- [19] Zhuang S Y, Yin B, Zhu Z L. A simulation study on effect of surface film-forming material on water evaporation [J]. Pedosphere, 2001, 11(1):67-72.
- [20] 高鹏程,张国云,孙平阳,等. 秸秆覆盖条件下土壤水分蒸发的 动力学模型 [J]. 西北农林科技大学学报:自然科学版,2004, 32(10):55-58,62.
 Gao P C,Zhang G Y,Sun P Y,et al. Dynamics model of moisture evaporation of soil covered by stalks [J]. Journal of Nowthwest Sci-Tech University of Agriculture and Forestry: Nature Science Edition, 2004,32(10):55-58,62. (in Chinese)
- [21] 朱祖祥. 土壤学 [M]. 北京:农业出版社,1983.
 Zhu Z X. Soil science [M]. Beijing: Agricultural Press, 1983.
 (in Chinese)