拔节后糜子干物质积累及分配规律研究

贾根良^{1a},张社奇^{1a},代惠萍²,屈继旗²,高小丽^{1b},冯佰利^{1b} (1西北农林科技大学 a 理学院,b 农学院,陕西 杨凌 712100;2 铜川职业技术学院,陕西 铜川 727031)

[摘 要]【目的】明确糜子拔节后期不同器官干物质的积累和分配规律。【方法】以榆糜3号为试验材料,采 用田间试验,于拔节后测定糜子各器官干物质含量,研究糜子各器官干物质积累及转运的动态变化规律。【结果】糜 子从拔节到成熟过程中,在拔节后34~48 d(籽粒灌浆期),各器官干物质积累与分配量达到最大值;干物质积累呈 "S"型曲线,符合"慢-快-慢"的增长规律。干物质积累过程表明,叶、茎、鞘、根系等器官干物质积累量与株高、穗长等 生物学性状互为显著正相关。【结论】糜子籽粒产量的形成过程是植株干物质积累与分配的过程,在一定时间内分配 到生殖器官的干物质量越多,其产量就越高。

[关键词] 糜子;拔节后期;干物质积累;分配规律 [中图分类号] S516.01 [文献标识码] A [文章编号] 1671-9387(2009)04-0086-05

Studies on dry matter accumulation and allocation of broomcorn millet (*Panicum miliaceum* L.) at late jointing stage

JIA Gen-liang^{1a}, ZHANG She-qi^{1a}, DAI Hui-ping², QU Ji-qi², GAO Xiao-li^{1b}, FENG Bai-li^{1b}

(1 a. College of Science, b. College of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China;
 2 Tongchuan pelytechnic, Tongchuan, Shaanxi 727031, China)

Abstract: [Objective] This research aimed to study dry matter accumulation and distribution in accumulation and of *Panicum miliaceum* L. in different organ's at late jointing stage. [Method] The dry matter contents in different millet organs were determined and dynamic changes of the accumulation and transportation of dry matter among organs were studied by using Yu-Mi 3 and the pot method in field. [Result] The results indicated that dry matter accumulated and allocated to all organs was maximum 34-41 d after jointing(filling stage);Dry matter accumulation showed a S curve at a slow-fast-slow rate. The dry matter accumulation process indicated that there was a significantly positive correlation between dry matter accumulation in leaf, stem, sheath, root and plant height, ear length and other biological characters. [Conclusion] The yield forming process of *Panicum miliaceum* L. was the process of dry matter accumulation and distribution. Within certain amount of time, the more dry matter distributed to reproductive organs, the higher the yield.

Key words: Broomcorn millet (*Panicum miliaceum* L.); late jointing stage; dry matter accumulation; allocation rule

糜子(Panicum miliaceum L.)属禾本科黍 (Panicum miliaceum),具有生育期短、耐旱、耐贫 瘠、耐盐碱等特性。由于我国糜子研究起步较晚,生 产管理粗放,单产水平普遍较低^[1],探索作物生长发

^{* [}收稿日期] 2008-05-22

[[]基金项目] 陕西省科技攻关项目(2007K01-15)

[[]作者简介] 贾根良(1965-),男,河南杞县人,高级实验师,主要从事生物物理研究。E-mail:daihp72@yahoo.com.cn

[[]通信作者] 张社奇(1964-),男,陕西扶风人,教授,博士,硕士生导师,主要从事生物物理研究。E-mail;zhangsheqi@nwsuaf.edu.cn

87

育过程中的干物质积累及其分配规律,是了解作物 光合能力和库、源、流特点的重要途径,因而该类研 究受到国内外学者的广泛重视。许多研究表明,作 物产量实质上是通过光合作用直接或间接形成的, 并取决于光合产物的积累与分配^[2-3]。有许多研究 证实,干物质积累对产量有重要的贡献^[4-10]。但目前 有关糜子植株生长发育过程中干物质积累的研究尚 比较少。为此,本研究以榆糜3号为参试品种,通过 大田试验,探讨拔节后期糜子的茎秆、鞘、叶片、根系、 籽粒等地上部与地下部各器官的干物质积累、分配与 转运的动态规律,旨在揭示糜子生长期籽粒产量形成 的生理机制,为糜子源库代谢理论的丰富和发展提供 依据,并为糜子的高产育种与栽培提供参考。

1 材料与方法

1.1 材料

参试品种选用陕西主栽糜子品种榆糜 3 号。

1.2 方 法

试验于 2007-05-09 在西北农林科技大学农作 试验站进行。该站位于黄土高原南部半湿润易旱区 (108°E,34°N),平均海拔 520 m,年平均降水量为 660 mm,主要集中在 7~9 月,为暖温带半湿润气 候。试验地土壤为壤土,前茬休闲。试验采用土柱 法,先按照 0~20,20~40,60~80,80~100 cm 层次 取土并分开堆放。取高 100 cm、直径 20 cm 的 PVC 管,直立放到预先挖好的土坑中,依次将对应土层的 土回填至 PVC 管中夯实。糜子于 5 月 11 日播种, 三叶期定苗。其他田间管理按照国家糜子品种区域 试验规范进行。

1.3 测定项目及方法

从生长基本一致且无病虫害的糜子中选择具有 代表性的5株挂牌标记,分别从拔节初期(2007-06-13)到成熟期,每隔7d取样1次,取样于上午8:00 进行。每次挖出PVC管,分部位、分叶位进行取样 测定,对各部位称取鲜质量后,在烘箱105℃杀青 15 min,80℃烘干至质量恒定,称取干质量。量叶 法测定叶面积,绿叶面积=长×宽×0.75。

测定根总长、根质量、根体积、地上部干质量及 株高时,用称重法测定糜子根系干质量和地上部干 质量;用直接测定法测定根总长、株高;用排液法测 定根体积。

籽粒灌浆期间,各器官干物质移动率(Move ratio,MR)和转运率(Transportation ratio,TR)按下 列公式^[11]计算: MR/%=(开花后器官最大干质量一成熟期器 官干质量)/开花后器官最大干质量×100%;

TR/%=(开花后器官最大干质量一成熟期器 官干质量)/籽粒最大干质量×100%。

1.4 数据处理

采用 Microsoft Excel、DPS 和 Origin7.5、SAS 统计软件进行数据处理与分析。

2 结果与分析

2.1 糜子各器官中干物质积累的动态规律

2.1.1 植株干物质积累的动态规律 在拔节后 34 d 左右, 糜子进入营养生长和生殖生长并进的旺盛 生长时期,茎、叶、鞘生长和籽粒的形成同时并进,茎 和叶等绿色器官光合作用制造的有机物质,一方面 用于满足自身生长的需要,另一方面供给籽粒灌浆, 因而拔节后各器官干物质积累的变化在一定程度上 反映了物质转运的源、库关系[12-13]。从图 1 可以看 出,随着拔节后时间的延长,糜子叶、茎和鞘的干物 质积累均呈单峰曲线变化,但各器官干物质积累高 峰值出现的时间并不相同,叶、茎、鞘干物质积累峰 值分别出现在拔节后的第 48,48 和 34 天,峰值过后 其干物质积累均呈下降趋势;籽粒的干物质积累量 随拔节后时间的延长而持续增长,但于拔节的第62 天后逐渐趋于平缓。说明叶片是糜子合成同化物的 "源";茎、鞘在保持绿色的同时,也能合成少量的有 机物质[3],当籽粒灌浆时(拔节后 34~48 d),其所储 备的部分同化物被"征调"出来输送到籽粒中,因此 茎、鞘充当了"源"和"库"的双重作用;而籽粒是实际 意义上的"库"。

图 1 拔节后期糜子叶、鞘、茎和籽粒干物质积累的动态变化

Fig. 1 Dynamic changes of dry matter accumulation in leaf, sheath, stem and seed in broomcorn millet at late jointing stage 2.1.2 糜子各器官中千物质的分配 从表 1 可以 看出,糜子拔节后期,干物质在各器官的分配比例随 生长中心的转变而发生变化。灌浆初期(拔节后 34 d),干物质主要分配在根、叶片、茎和鞘中,其中叶片 是光合产物的主要分配中心,也是糜子植株的生长 中心。在灌浆期(拔节后 48 d 左右),叶、茎、鞘和根 系干质量所占比例较大,此时叶、茎、鞘、籽粒和根干 质量占全株总干质量的比例分别为 11.65%, 26.27%,23.01%,16.74% 和 22.33%。进入籽粒 灌浆后期(拔节后 55 d 左右),植株的生长中心逐渐转向生殖生长,籽粒的干质量占全株干质量的比例 不断增大,干物质分配中心转向籽粒。在茎、叶、鞘 和根系干物质分配比例逐渐下降的同时,籽粒的干 质量比例不断增加,到完熟期时(拔节后 69 d 左 右),糜子籽粒干质量达到最大值,为全株总干质量 的24.19%。糜子整个生育进程中,各器官转换率的 大小表现为茎<籽粒<根系<鞘<叶。

表 1 拔节后期糜子各器官中干物质分配比例的动态变化

Table 1 Dynamic distribution changes of dry matter among organs in broomcorn millet at late jointing stage 🛛 🖔

器官 Organ	拔节后时间/d Day after Jointing								
	0	20	27	34	41	48	55	62	69
叶 Leaves	23.92	28.66	15.06	11.99	12.43	11.65	11.46	6.81	4.35
茎 stems	14.41	12.94	32.80	28.41	25.60	26.27	26.60	20.78	19.13
鞘 sheaths	10.24	10.39	6.51	27.43	24.02	23.01	18.65	17.29	16.91
籽粒 seeds	0.00	0.00	0.00	2.87	14.03	16.74	19.17	22.60	24.19
根系 root	51.43	48.01	45.63	29.32	23.92	22.33	24.12	32.51	35.42

2.2 糜子拔节后不同叶位绿叶面积的变化

由图 2 可知,随着拔节后生长时间的延长,糜子 不同叶位的绿叶面积均表现出先升高后降低的变化 趋势。不同叶位间绿叶面积存在明显的差异,表现 为旗叶>倒二叶>倒三叶>倒四叶>倒五叶。以旗 叶叶面积最大,光合性能最强,并在籽粒灌浆中后期 表现得更为明显。

2.3 根系干物质的运转规律

由表 2 可以看出,从拔节首日到成熟期(拔节后 0~69 d),糜子根系干物质积累量的变化呈"S"型曲 线,符合"慢-快-慢"的增长规律。随拔节后生长时 间的延长,根数和根体积呈由低到高再降低的变化 趋势;在拔节后 0~41 d,根系干质量呈上升趋势,尤 其在拔节后 20~41 d,根干质量的增长十分迅速,拔 节48d后,干重又开始迅速下降。

图 2 糜子不同叶位绿叶面积随拔节后生长时间的变化 Fig. 2 According to changes of different leaf area at late jointing stage in bromcorn millet

表 2	拔节后不同时期糜子根系的生长发育及干物质的积累

Table 2 Dry matter accum	nulation and growth of root	ts in different time of	broomcorn millelt
--------------------------	-----------------------------	-------------------------	-------------------

拔节后天数/d Day after jointing	根长/cm Root length	根数 Root number	根体积/(mL・株 ⁻¹) Root volume	根干质量/(g・株 ⁻¹) Root dry weight
0	47	25	2.9	0.23
20	59	28	4.6	0.52
27	71	42	9.9	1.52
34	88	55	12.6	2.84
41	110	72	25.1	3.93
48	106	70	24.9	3.79
55	103	68	23.1	2.10
62	102	66	22.1	1.81
69	100	60	16.8	1.93

由表2和表3可以看出,糜子籽粒灌浆期(拔节

后 34~48 d)叶片干物质的移动率最高,即干物质输

出率最大,且其转运率也最高,表明其对籽粒的贡献 最大,本研究结果与高小丽^[13]在绿豆上的研究结果 相似。茎、鞘干物质的移动率较高,且转运率较高, 对籽粒的贡献也较大;根系干物质的移动率最低,其 转运率最小,对籽粒的贡献也较小。该结果进一步 表明,糜子叶片、茎和鞘是籽粒充实的主要源器官, 其次是根系和壳。

表 3 糜子各器官干物质移动率和转运率的比较

Table 3 Comparison of transportation rate and displacement rate of dry matter among organs in broomcorn millet

器官 Organ	最大干质量/(g・株 ⁻¹) Maximum dry weight	成熟时干质量/(g・株 ⁻¹) Mature dry weight	移动率/% Move ratio	转运率/% Transportation ratio
叶 Leaves	10.64	3.6	66.17	88.89
茎 Stems	20.7	15.82	23.57	61.62
鞘 Sheath	19.94	13.98	29.89	75.25
壳 Shells	3.25	2.19	32.62	13.38
籽粒 Seeds	7.92	6.2	21.72	21.72
根系 Roots	22.4	19.29	13.88	39.27

表4表明,糜子产量与千粒质量、穗长、结实率、 穗粒数、株高均呈正相关,其中与千粒质量、结实率、 穗粒数、单穗质量、株高呈极显著相关,相关系数分 别为0.96210,0.99998,0.98341和0.99997;与 穗长显著相关,相关系数为 0.815 17;与单穗质量呈 负相关,但未达到显著水平,其相关系数为 -0.652 19。因此,在品种选育时应将千粒质量、穗 长、结实率、穗粒数和株高作为重点指标来考虑。

表 4 糜子产量构成因素之间的相关性分析

Table 4 Correlation analysis of the yield factors of broomcorn mill	let
---	-----

因素 Factor	产量 Seed yield N	单穗质量 Weight per ear	千粒质量 1000-Seed weight	穂长 Ear length	结实率 Fecundity	穗粒数 Grain per ear	株 高 Plant height
产量 Seeds yield	1						
单穗质量 Weight per ear	-0.65219	1					
千粒质量 1 000-Seed weight	0.962 10*	* 0.958 61*	* 1				
穗长 Ear length	0.815 17*	0.992 9**	0.953 82*	* 1			
结实率 Fecundity	0.999 98*	* 0.964 01*	* 0.839 63 *	• 0.999 98**	* 1		
穗粒数 Grains per ear	0.983 41*	* -0.018 78	0.807 04*	-0.50000	0.890 21*	** 1	
株高 Plant height	0.999 97*	* -0.558 11	0.964 02*	* -0.839 65*	1.000 00*	• * 0.890 19	** 1

注:**表示在 0.001 水平极显著相关,*表示在 0.005 水平显著相关。

Note: * * denotes significant difference at 0.001 probability level and * denotes significant difference at 0.005 probability level.

3 讨 论

一些研究表明,茎和叶鞘是穗部干物质的直接 来源^[14]。茎和叶鞘较大比例的干物质含量不仅为 穗部提供了充足的物质基础,而且还是提高植株抗 倒伏能力的物质基础^[14-15]。本研究表明,糜子拔节 20~31 d 后逐渐进入旺盛生长期,各器官干物质积 累量均呈"S"型曲线,符合"慢-快-慢"的增长规律。 糜子籽粒灌浆期(拔节后 34~48 d)是干物质积累的 高峰期,也是干物质分配的高峰期,干物质在叶、茎、 鞘、根各器官的分配率,随糜子生长进程而发展变 化,这与 Patel^[16]的研究结果相似。可见要提高糜 子的产量,应在糜子拔节的初期、中期,及时改善水 肥条件,协调好根、鞘、茎、叶的生长,提高糜子的光 合能力,实现干物质的积累和合理分配。

糜子籽粒产量的形成过程是植株干物质积累与

分配的过程,在一定时期内分配到生殖器官的干物 质越多,产量就越高。上述研究分析表明,从拔节初 期到成熟期,糜子叶、茎、鞘、籽粒等器官干物质运转 率的大小表现为叶<鞘<茎<籽粒<壳;株高、穗长 等生物学性状与产量呈显著相关或极显著相关。因 此,在栽培上应采取必要的调控措施,保证糜子植株 的良好生长,以达到提高产量、增进品质的目的。

[参考文献]

- [1] 代惠萍,冯佰利,高小丽,等. 糜子叶片衰老与活性氧代谢研究
 [J]. 干旱地区农业研究,2007,26(1):217-220.
 Dai H P, Feng B L, Gao X L, et al. Leaf senescence and activate oxygen metabolism of *Panicum miliaceum* L. in the mid-and late growth [J]. Agricultural Research in the Arid Areas, 2007,26(1):217-220. (in Chinese)
- [2] 王鹤龄,王润元,牛俊义,等.黄土高原地膜春小麦地上干物质
 累积与转运规律 [J].生态学杂志,2008,27(1):28-32.
 Wang H L, Wang R Y, Niu J Y, et al. Dry matter accumulation

and allocation in spring wheat mulched with plastic film in Loess Plateau [J]. Chinese Journal of Ecology, 2008, 27(1):28-32. (in Chinese)

[3] 董 钻,沈秀英.作物栽培学总论 [M].北京:中国农业出版 社,2000.

Dong Z,Shen X Y. Crop cultivation of general [M]. Beijing: China Agriculturoal Press,2000. (in Chinese)

[4] 杨国虎,李建生,罗湘宁,等.干旱条件下玉米叶面积变化及地 上干物质积累与分配的研究 [J].西北农林科技大学学报:自 然科学版,2005,33(5):27-32.

Yang G H,Li J S,Luo X N, et al. Studies on leaf area change and above-ground dry material accumulation and distribution of maize in different droughts [J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, Natural Science Edition, 2005, 33(5):27-32. (in Chinese)

[5] 阎世理,蒋纪芸,潘世录,等.陕西关中地区春小麦生长发育规律的研究[J].西北农业大学学报,1987,15(1):17-24.
 Yan SL,Jiang JY,Pan SL, et al. The law of growth and de-

velopment of spring wheat in guanzhong region of Shaaxi Province [J]. Journal of Northwest Sci-tech University of Agriculture and Forestry: Natural Science Edition, 1987, 15(1): 17-24. (in Chinese)

- [6] 张 娟,崔党群,范 平,等.小麦冠层结构与产量及其构成因素的典范相关分析 [J].华北农学报,2000,15(3):39-44.
 Zhang J,Cui D Q, Fan P, et al. Canonical correlations analysis between the canopy structures and yield with Its components in wheat [J]. Acta Agriculturae Boreall-sinica, 2000, 15(3): 39-44. (in Chinese)
- [7] Bidinger F, Musgrave R B, Fischer R A. Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley [J]. Nature, 1977, 270:431-433.
- [8] Heuvelink E. Dry matter partitioning in tomato:validation of a dynamic simulation model [J]. Annals of Botany, 1996, 77:71-80.

- [9] Wardlaw I F. The control of carbon partitioning in plants [J]. New phytologist, 1990, 116: 341-381.
- [10] Marcelis L F M. Sink strength as a determinant of dry mater partitioning in the whole plant [J]. Journal of Experimental Botany, 1996, 47:1281-1291.
- [11] 高庆荣,孙兰珍,刘保申. 杂种小麦花后干物质积累转运动态 和分配 [J]. 作物学报,2000,26(2):163-170.
 Gao Q R, Sun L Z, Liu B S. Accumulation, transportation and distribution of dry matter after anthesis in hybrid wheat [J].
 Acta Agronomica Sinica, 2000,26(2):163-170. (in Chinese)
- [12] 闫春娟,韩晓增,王守宇.水钾耦合对大豆干物质积累和产量的影响[J].大豆科学,2007,26(6):862-867.
 Yan C J, Han X Z, Wang S Y. Effect of water-potassium coupling on dry matter accumulation and yield of soybean [J].
 Soybean Science,2007,26(6):862-867. (in Chinese)
- [13] 高小丽.不同基因型绿豆开花结荚期生理特性研究 [D]. 陕西 杨凌:西北农林科技大学,2007.
 Gao X L. Physiological characteristics of different genotypes of mung bean at the flowering and pods formation stage [D].
 Yangling, Shaanxi: Northwest Sci-Tech University of Agriculture and Forestry,2007. (in Chinese)
- [14] Niu J Y,Gan Y T,Zhang J W, et al. Post anthesis dry matter accumulation and redistribution in spring wheat mulched with plastic film [J]. Crop Science, 1998,38:1562-1568.
- [15] 刘万代,尹 钧,朱高纪.剪叶对不同穗型小麦品种干物质积 累及籽粒产量的影响[J].中国农业科学,2007,40(7):1353-1360.

Liu W D, Yin J, Zhu G J. Effects of Leaf removal on dry matter accumulation and grain yield in different spike-type wheat varieties [J]. Scientia Agricultura Sinica, 2007, 40(7): 1353-1360. (in Chinese)

[16] Patel N M. Correlation analysis in studying influence of root growth in yield and quality of Bidi tobacco [J]. Tobacco Res, 1998,14: 25-27.