铜对土壤脲酶活性特征的影响

王 娟¹,和文祥^{1,2},孙铁珩²

(1 西北农林科技大学 资源环境学院,陕西 杨凌 712100;2 沈阳环境工程重点实验室,辽宁 沈阳 110044)

[摘 要] 铜是土壤中的"双重元素",为了从土壤酶角度探讨其生态毒理,采用模拟方法较为系统地研究了铜 对土壤脲酶活性及酶促反应参数的影响。结果表明,(1)土壤肥力水平越高,脲酶活性越大,铜的加入导致土壤脲酶 活性降低越大,除5号土样外,铜的质量浓度与土壤脲酶活性达显著或极显著负相关,表明土壤脲酶活性可作为土壤 铜污染程度的监测指标之一;供试土壤铜轻微和严重污染时,铜质量浓度分别为94.00~151.75和470.40~759.28 mg/kg;尿素浓度对土壤生态剂量值影响不大,生态剂量总体呈现土娄土大于红壤。(2)除4号土样外,土壤脲酶最大 反应速度(Vmax)、最大反应速度/米氏常数(Vmax/Km)和反应速度常数(k)值,随铜质量浓度的增加呈显著或极显著降 低,Km值则略有增加,说明铜对土壤脲酶的作用机理为混合型抑制,其中包含微弱的竞争性抑制,但以非竞争性抑制 为主。可见,土壤脲酶及其参数在一定程度可表示土壤铜的污染程度。

[关键词] 土壤脲酶;铜;动力学参数;作用机理;土娄土;红壤

[中图分类号] S154.2 [文献标识码] A [文章编号] 1671-9387(2007)11-	0135-06
--	---------

Soil urease activity affected by copper

WANGJuan¹, HE Wen-xiang^{1,2}, Sun Tie-hang²

(1 College of Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China;
2 Shenyang Key Laboratory of Environmental Engineer, Shenyang, Liaoning 110044, China)

Abstract : Copper is a double element in the soil. In order to investigate the copper eco-toxicity by means of soil enzyme, the relationship between soil urease and copper is systematically studied by using simulative method. The results showed that soil urease activity was increased with the improvement of soil fertility. But the urease activity was remarkably reduced by the introduction of copper into soil ,and the relationship between them was up to the significant negative correlation level so that soil urease activity could be used as a testing index of soil polluted by copper. Calculated copper ecological dose ED_{10} and ED_{50} values, which could be used as different polluted levels, were 94. 00 - 151.75 and 470. 40 - 759. 28 mg/ kg in soils tested. Urea concentration showed little effect on ecological dose. The kinetic parameters such as V_{max} , V_{max}/K_m and k were reduced with the increase of copper concentration ,and their relationship was up to the significant negative correlation and their relationship was up to the significant negative correlation level s, was a mixed inhibition ,including both competitive and non-competitive effect ,while the non-competitive mechanism was more important. Our results demonstrated that soil urease could be used as an indicator for soil copper pollution.

Key words: soil urease; copper; kinetic parameter; reaction mechanism; Lou soil; Red soil

^{*[}收稿日期] 2006-10-18

[[]基金项目] 国家自然科学基金项目(40301022);国家重点基础研究发展计划(973)子项目(2004CB418506)

[[]作者简介] 王 娟(1982 -), 女, 陕西华阴人, 在读硕士, 主要从事土壤生态毒理研究。 E-mail : juanwangsp@yahoo. com. cn

[[]通讯作者] 和文祥(1968 -),男,陕西黄龙人,副教授,博士,主要从事土壤生态毒理以及土壤生物化学研究。E-mail:wxhe1968 @163. com

铜是环境中存在的主要金属元素之一.我国土 壤中铜的背景值约为 20.7 mg/kg,耕作土壤中铜的 最高值达到 272 mg/kg^[1],而在一些污染土壤中铜 含量高达 17 000 mg/ kg^[2]。从应用角度来讲,铜是 一种"双重元素",一方面,在其含量较低时,它是植 物正常新陈代谢及生长发育活动所必需的微量矿质 元素之一,包括作为重要的辅助因子共同构建了细 胞色素氧化酶、多酚氧化酶、抗坏血酸氧化酶、超氧 化物歧化酶(SOD)等蛋白质,参与呼吸代谢中的氧 化还原反应和光合作用的电子传递过程[3],表现出 对生物有益的特性:另一方面.随着农业生产上含 Cu 杀菌剂^[2](波尔多液和硫酸铜溶液)以及微量营 养肥料(各种经济林果等的专用肥)的施用,工业上 Cu 矿的过度开采及含 Cu 污染物的大量排放,导致 土壤、水体等受到铜污染,有的地方已达到十分严重 的程度,严重威胁到人畜的健康。因此,Cu的生态 毒理效应已逐渐成为人们关注的主要环境课题之 一,对其生态毒理的研究具有十分重要的理论和实 践意义。

土壤酶催化了土壤中多数具有重要生化意义的 反应,因而被称为环境生态系统运行的中心,在土壤 生态系统中起着重要作用^[4-5]。土壤脲酶作为惟一 作用于肥料(尿素)的土壤酶类,在土壤营养物质转 化、环境保护与监测等方面具有重要的环境意 义^[6-10]。近 30 年来,国内外学者对重金属污染条件 下土壤酶效应进行了大量的研究,获得了较为满意 的结果,提出了一些可监测土壤污染的指标参数,揭 示了环境污染对土壤生化活性的影响。但以上研究 大多集中在一些污染型重金属元素,如汞、镉、砷、 铅、铬等^[11-12]。对铜这一"双重元素"的土壤酶生态 效应却鲜见报道,且铜与土壤酶关系的报道大多局 限于矿区^[11]。为此,本研究采用模拟方法,较为系 统地探讨了铜与土壤脲酶活性之间的关系,以期为 环境保护、污染程度监测和土壤肥力的提高等提供 参考依据。

- 1 材料与方法
- 1.1 供试土样

供试土样包括 2004 ~ 2005 年采自中国科学院 土壤研究所江西鹰潭生态试验站的红壤(简育湿润 富铁土 Hap udic ferrisols)和陕西省杨凌区农田的 土娄土(土垫旱耕人为土 Eum orthic anthrosols)。 采样时,先去除 0~5 cm 表层土后,五点法取 5~20 cm 耕层土样,混匀风干,过 1 mm 尼龙筛后备用。 常规方法测定土样的理化性质^[13],结果见表 1。

表 1 供试土样的理化性质

			-				
采样地点 Sampling site	土样类型 Soil types	土样编号 Soil No.	有机质/ (g ·kg ⁻¹) O.M.	全氮/ (g ·kg ⁻¹) Total N	全磷/ (g ·kg ⁻¹) Total P	碱解氮/ (g ·kg ⁻¹) Alkaline hydrolytic N	рH
陕西杨凌	. 244 1	1	19.60	2.48	3.71	0.113	7.79
Yangling , Shaanxi	- 1 安工 Lou soil	2	11.13	2.44	3.59	0.065	7.91
	Lou son	3	11.20	2.44	3.57	0.043	7.89
江西鹰潭	ルエ1 曲	4	17.30	1.62	1.58	0.102	5.57
Yingtan , Jiangxi	红壤 Red soil	5	11.09	1.01	0.79	0.067	5.71
	Red Soli	6	9.85	1.01	0.71	0.059	6.07

Table 1 Physical-chemical properties of soil tested

1.2 试验方法

向 5.00 g 土样中加 1 mL 甲苯,15 min 后添加 5 mL 不同质量浓度(0.0,50.0,100.0,250.0,500.0, 1 000.0 mg/kg)铜溶液(CuCl₂)混匀,30 min 后分别 加入 10 mL 不同浓度(0.005,0.010,0.050,0.100 mol/L)尿素溶液和 20 mL pH 6.7 的柠檬酸盐缓冲 液。于 37 培养,每隔 3 h 取样,靛酚蓝比色法测定 脲酶活性^[14],以形成 NH₃-N 的量表示,每处理重复 3 次,并分别设无底物(尿素)和无土壤处理对照。

1.3 数据处理

1.3.1 土壤脲酶动力学米氏常数 Km 和最大反应 速度 Vmax 经典米氏方程为:

 $V_0 = (V_{\max} \times [S]) / (K_m + [S])_{\circ}$

经数学变换后得到:

 $ln([S_0]/[S])/t = ([S] - [S_0])/t \times K_m + V_{max}/K_m$ 。 式中: V_0 为酶促反应的初速度, t为酶促反应时间, $[S_0]$ 和[S]分别为初始和 t时间时的底物浓度。

将不同时间的 ln ([S₀]/[S])/t 和 ([S] -[S₀])/t 值进行线性拟合,即可求得 K_m和 V_{max}值。 1.3.2 土壤酶促反应速度常数 k 酶促反应速度 常数 k 从本质上反映了土壤酶促反应速度的快慢。

$$k = 1/t \times \ln(V_a/(V_a - V_t))_{o}$$

式中:*V_a、V_t*分别为反应过程中最大的氨释放量和*t*时间内的氨释放量。

2.1 不同质量浓度铜对土壤脲酶活性的影响

当尿素浓度为 0.100 mol/L,铜质量浓度为 0.0,50.0,100.0,250.0,500.0,1 000.0 mg/kg 时, 土壤脲酶活性测定结果见表 2。由表 2 可知,当铜 质量浓度为 0~1 000.0 mg/kg 时,随土壤肥力升 高,红壤和±娄土的土壤脲酶活性均增强。土壤脲酶 活性与土壤理化性质相关性分析结果显示,仅有机 质(r=0.895^{*})和碱解氮(r=0.931^{*})与土壤脲酶 活性呈显著正相关。这主要是因为土壤脲酶是以吸 附态存在于土壤有机质和粘粒上^[15]。

表 2 不同质量浓度铜对供试土壤脲酶活性的影响

Table 2 Effect of different Cu concentration on soil urease activity of soils tested $\mu g/(g \cdot h)$

土样编号		Cu 厉	质量浓度/ (mg ·kg⁻¹) Cu concentrations		
Soil samples	0.0	50.0	100.0	250.0	500.0	1 000.0
1	6.10	5.43	5.07	4.69	3.04	2.31
2	4.39	4.35	3.51	3.08	1.40	1.45
3	2.37	2.19	1.68	1.27	0.70	0.55
4	6.71	4.34	3.77	2.35	2.45	0.78
5	3.23	3.04	1.67	1.07	0.72	0.47
6	2.50	2.01	1.33	0.86	0.45	0.34

由表 2 还可知,随着铜质量浓度增加,土壤脲酶 活性呈降低趋势,如尿素浓度为 0.100 mol/L 时,与 铜质量浓度为 0 mg/kg 时相比,铜质量浓度为 50.0 mg/kg时,供试土样的脲酶活性降幅为 0.91%~ 35.32%。随铜质量浓度增加,土壤脲酶活性的降幅 增大,当铜质量浓度达到1000.0 mg/kg时,供试土 壤的脲酶活性降幅达到61.7%~90.5%。对处理 中土壤脲酶活性(U)与铜质量浓度(Ccu)间的关系 进行线性拟合,结果见表3。

表 3 土壤脲酶活性与铜质量浓度的拟合方程

Table 3 Regression equations between soil urease activity and Cu concentration

	尿素浓度/(mol ·L ⁻¹)	家素浓度/(mol·L ⁻¹) 拟合方程		生态剂量/ (mg ·kg ⁻¹) Ecological dose		
Soil sample No.	Urea concentration	ion Regression equation	Correlation coefficient	ED_{10}	ED_{50}	
	0.005	$U = 3.1314 - 0.0021 \times C_{Cu}$	- 0.950 * *	149	746	
	0.010	$U = 3.8898 - 0.0026 \times C_{Cu}$	- 0.957 * *	150	748	
1	0.050	$U = 4.8774 - 0.0031 \times C_{Cu}$	- 0.920 * *	157	787	
	0.100	$U = 5.6005 - 0.0037 \times C_{Cu}$	- 0.955 * *	151	757	
	0.005	$U = 2.8468 - 0.0025 \times C_{Cu}$	- 0.892 *	114	569	
2	0.010	$U = 3.4142 - 0.0031 \times C_{Cu}$	- 0.909 *	110	551	
2	0.050	$U = 3.6794 - 0.0031 \times C_{Cu}$	- 0.900 *	119	593	
	0.100	$U = 4.0203 - 0.0031 \times C_{Cu}$	- 0.890 *	130	648	
	0.005	$U = 1.243$ 6 - 0.001 2 × C_{Cu}	- 0.862 *	104	518	
2	0.010	$U = 1.4554 - 0.0014 \times C_{Cu}$	- 0.836 *	104	520	
3	0.050	$U = 1.8100 - 0.0016 \times C_{Cu}$	- 0.871 *	113	566	
	0.100	$U = 2.017 \ 3 - 0.001 \ 8 \times C_{Cu}$	- 0.891 *	112	672	
	0.005	$U = 2.321$ 6 - 0.002 1 × C_{Cu}	- 0.933 * *	111	553	
4	0.010	$U = 2.9755 - 0.0027 \times C_{Cu}$	- 0.902 *	110	551	
4	0.050	$U = 4.4030 - 0.0042 \times C_{Cu}$	- 0.886 *	105	524	
	0.100	$U = 4.8348 - 0.0045 \times C_{Cu}$	- 0.843 *	107	537	
	0.005	$U = 1.6687 - 0.0018 \times C_{Cu}$	- 0.821 *	93	464	
~	0.010	$U = 1.954$ 3 - 0.002 1 × C_{Cu}	- 0.802	93	465	
5	0.050	$U = 2.2857 - 0.0023 \times C_{Cu}$	- 0.801	99	497	
	0.100	$U = 2.4929 - 0.0025 \times C_{Cu}$	- 0.805	100	499	
	0.005	$U = 1.1485 - 0.0013 \times C_{Cu}$	- 0.854 *	88	442	
	0.010	$U = 1.3269 - 0.0014 \times C_{Cu}$	- 0.847 *	95	474	
0	0.050	$U = 1.635 0 - 0.001 7 \times C_{Cu}$	- 0.849 *	96	481	
	0.100	$U = 1.8433 - 0.0019 \times C_{Cu}$	- 0.823 *	97	485	

注:自由度 n-2=4, r0.05=0.811, r0.01=0.917。表5同。

Note: Freedo me n - 2 = 4, $r_{0.05} = 0.811$, $r_{0.01} = 0.917$. It is the same as table 5.

表3表明,除5号土样的3个处理外,土壤脲酶 活性与铜质量浓度间均达显著或极显著负相关关 系,说明铜可明显抑制土壤脲酶活性,这可能是因为 铜与土壤脲酶活性中心结合,影响了土壤脲酶与底 物的结合,最终表现出活性的变化。表明土壤脲酶 活性在一定程度上可监测土壤铜污染的程度。这与 滕应等^[16]对铜矿区土壤的研究结果相似。

此外,由拟合方程可计算土壤脲酶的生态剂量 (Ecological dose) ED10 和 ED50^[5,17],其分别代表土 壤生化活性降低 10 %和 50 %时的外源污染物含量, 也可表征轻微和严重污染程度时土壤外源污染物的 浓度或含量。由表 3 还可知:(1)在供试尿素浓度范 围内, ED10值(平均值 ±标准差,下同) ± 送土1号为 (151.75 ±3.59) mg/kg,2 号为(118.25 ±8.65) mg/kg,3号为(108.25 ±4.92) mg/kg;红壤4,5,6 号土样的 ED10值分别为(108.20 ±2.75),(96.25 ± 3.77),(94.00 ±4.08) mg/kg。说明随土壤肥力水 平的降低,表征土壤铜轻微污染的浓度值(ED10)逐 渐减小,表明在有机质含量高的土样中,土壤有机质 对土壤脲酶的保护作用及对铜的吸附作用较强,故 铜对脲酶的毒害较小。(2) ±娄土 1,2,3 号土样的 ED₅₀分别为(759.28 ±18.89),(590.48 ±42.41)和 (569.00 ±72.3) mg/kg;红壤4,5,6 号土样的 ED50 分别为(541.29 ±13.37),(481.08 ±19.26), (470.40 ±19.66) mg/kg,说明土壤铜严重污染时, 土娄土和红壤的铜质量浓度分别为 (569.00~ 759.28)和(470.40~541.29)mg/kg;随土壤肥力 降低, ED50 与 ED10 表现出类似的规律性变化。 (3)不同尿素浓度下, ED10和 ED50 值差别较小, 说明 底物浓度对土壤生态毒理的影响较小。(4)供试土 壤铜轻微和严重污染时铜质量浓度分别为(94.00~ 151.75)和(470.40~759.28) mg/kg。(5) 生态剂 量(ED10和 ED50值)总体呈现土娄土大于红壤的规律 性变化,这可能是由于南方红壤的 p H 较低,土壤为 酸性土壤,而铜在酸性条件下多以离子状态存在,表 现出较强的生态毒性,而北方的±娄土为碱性土壤, 铜的毒性相对较弱。

 2.2 不同质量浓度铜对土壤脲酶动力学参数的影响 动力学是研究土壤酶促反应机制的重要手段之 一^[18-20]。米氏常数 K_m 表征酶与底物结合的牢固程 度,当 K_m 值小时,酶与底物结合牢固,形成酶底物 复合物的概率大,亲和力也大,反之,亲和力小;最大 反应速度 V_{max}是总酶量的量度,可表征酶底物复合 物分解为酶和产物的速率,是实现某种酶过程的土 壤潜在能力的容量指标。脲酶催化反应的速率不仅 取决于酶-底物复合体的形成速度,也取决于其分离 速度。

由表4可以看出,(1) ±娄土和红壤脲酶的 Km 值分别为1.38~7.79和1.53~7.51mmol/L,最大 相差不超过 5.7 倍,即 Km 是处于同一数量级的,这 是由于土壤脲酶来源比较单一,即主要来源于微生 物的缘故。(2)随铜质量浓度增大,土壤脲酶的 Km 值总体呈增加趋势,表明在供试铜质量浓度(0~ 1 000.0 mg/kg)范围内,铜的加入导致土壤脲酶与 底物(尿素)间的亲和力降低;从机理上讲其间具有 微弱的竞争性抑制作用。(3)随着土壤类型和肥力 水平变化,土壤脲酶 Km 变化的规律性不明显,这与 其他重金属的研究结果[15,20] 相类似。(4) 除红壤 4 号土样的个别处理外,土娄土脲酶的 Vmax 大于红壤, 且随肥力水平升高而增大,说明±娄土中脲酶含量较 高,这与前面土壤脲酶活性的结果基本一致。(5)铜 的加入导致土壤脲酶 Vmax 值降低,对铜质量浓度与 土壤脲酶 Vmax 关系进行线性拟合,结果(表 5)显示, 除红壤 4 号土样外,其他土样脲酶活性 Vmax 与铜质 量浓度的关系均达显著或极显著负相关,表明铜的 加入降低了脲酶-尿素复合物解离的速度,揭示出铜 对土壤脲酶的作用机理为非竞争抑制。结合前面 Km 的变化情况认为,铜对土壤脲酶是一种混合抑 制作用,但以非竞争性抑制作用为主。

有学者认为,V_{max}/K_m 是酶促反应初速度的重 要指标,可作为土壤肥力的指标之一。反应速度常 数 k 则在本质上反映了酶促反应是"快"还是"慢", 其值与底物浓度无关[18]。从表 4 和表 5 还可以看 出:(1)除±娄土1号和红壤4号土样外,±娄土脲酶 V_{max}/K_m 和 k 值均大于红壤,说明±娄土脲酶酶促反 应速度较快,表观上体现为酶活性较高;(2)无论是 +娄土还是红壤,在相同铜质量浓度条件下,土壤脲 酶 V_{max}/ K_m 和 k 值均呈现随肥力水平升高而增大的 规律性变化,说明高肥力土壤脲酶活性中心易与底 物结合形成中间复合物,酶促反应速度较快:(3)随 铜质量浓度增大,脲酶 V max/ Km 和 k 值总体上均呈 逐渐减小趋势,相关性分析显示,除红壤4号和6号 土样外.其他土样脲酶 V_{max}/K_m 与铜质量浓度的关 系均达显著或极显著负相关,说明铜的加入从本质 上减缓了脲酶酶促反应的速度,同时也说明土壤脲 酶对铜污染是比较敏感的, Vmax、Vmax/Km和 k 值都 可和酶活性一起作为铜污染程度的监测指标。

139

表 4 不同质量浓度铜对供试土壤脲酶动力学参数的影响

Table 4 Effect of different Cu concentration on Kinetic parameter of urease of soils tested

十比论中							
上作编写 Soil sample No	(mg · kg ⁻¹)	K_m	$V_{\rm max}$ / (µmol ·	$V_{\rm max}/K_m/$	$k/(x_{10}^{-3})$		
Son sample ito	Cu concentrations	$(\text{mmol} \cdot L^{-1})$	$\mathbf{L}^{-1} \cdot \mathbf{g}^{-1} \cdot \mathbf{h}^{-1}$	(x 10 ⁻³)	K/ (X 10 ⁻⁺)	r	
	0.0	1.68	25.047	14.870	4.174	- 0.924	
	50.0	2.00	22.598	11.274	3.504	- 0.891	
1	100.0	1.70	21.488	12.612	3.636	- 0.823	
1	250.0	1.81	17.943	9.927	2.877	- 0.917	
	500.0	2.08	12.054	5.779	1.850	- 0.803	
	1 000.0	2.13	8.200	3.849	1.214	- 0.892	
	0.0	2.18	18.883	8.657	3.078	- 0.601	
	50.0	2.55	15.345	6.009	2.292	- 0.561	
2	100.0	2.04	12.278	6.013	2.046	- 0.548	
2	250.0	1.86	8.824	4.728	1.445	- 0.766	
	500.0	3.79	4.976	1.311	0.591	- 0.574	
	1 000.0	4.53	4.696	1.037	0.477	- 0.792	
	0.0	1.51	9.180	6.097	1.637	- 0.865	
3	50.0	1.77	7.400	4.172	1.207	- 0.893	
	100.0	1.38	4.895	3.543	0.875	- 0.928	
	250.0	2.95	3.920	1.328	0.505	- 0.750	
	500.0	4.90	2.176	0.444	0.213	- 0.605	
<	1 000.0	7.79	1.801	0.231	0.128	- 0.774	
	0.0	2.00	40.449	20.215	6.303	- 0.937	
	50.0	2.42	33.408	13.815	4.672	- 0.967	
	100.0	1.89	13.504	7.144	2.097	- 0.953	
4	250.0	1.53	7.707	5.049	1.307	- 0.940	
	500.0	1.88	7.976	4.235	1.270	- 0.817	
	1 000.0	2.09	3.965	1.897	0.611	- 0.757	
	0.0	3.52	14.658	4.168	1.845	- 0.569	
	50.0	3.37	10.857	3.222	1.373	- 0.607	
-	100.0	2.30	6.254	2.720	0.962	- 0.617	
5	250.0	1.97	3.488	1.767	0.542	- 0.842	
	500.0	3.79	2.082	0.549	0.232	- 0.822	
	1 000.0	7.51	0.175	0.023	0.131	- 0.534	
	0.0	1.77	7.089	4.012	1.143	- 0.930	
	50.0	2.27	5.343	2.351	0.769	- 0.910	
-	100.0	2.47	3.860	1.565	0.551	- 0.748	
6	250.0	2.87	2.322	0.809	0.302	- 0.795	
	500.0	6.52	1.415	0.217	0.112	- 0.767	
	1 000.0	5.19	0.492	0.095	0.045	- 0.828	

注:自由度 n - 2 = 14, $n_{0.05} = 0.497$, $n_{0.01} = 0.623$ 。Note:Freedome n - 2 = 14, $n_{0.05} = 0.497$, $n_{0.01} = 0.623$.

表 5 土壤脲酶动力学参数与铜质量浓度(Ccu)的相关性

Table 5	Relationship	between	soil	urease	kinetic	parameter	and	Cu	concentration
---------	--------------	---------	------	--------	---------	-----------	-----	----	---------------

土样 Soil sample	拟合方程 Regression equation	相关系数 Correlation coefficients	土样 Soil sample	拟合方程 Regression equation	相关系数 Correlation coefficients
1	$V_{\text{max}} = 23.14 - 0.016.6 \times C_{\text{Cu}}$	- 0.964 * *	4	$V_{\text{max}} = 27.022 - 0.029 \times C_{\text{Cu}}$	- 0.723
	$V_{\text{max}}/K_m = 12.967 - 0.103 \times C_{\text{Cu}}$	- 0.934 * *		$V_{\text{max}}/K_m = 13.059 - 0.0137 \times C_{\text{Cu}}$	- 0.750
	$k = 3.781 \ 1 - 0.002 \ 9 \ \times C_{Cu}$	- 0.955 * *		$k = 4.081 6 - 0.004 3 \times C_{Cu}$	- 0.728
2	$V_{\text{max}} = 14.861 - 0.0127 \times C_{\text{Cu}}$	- 0.846 *	5	$V_{\text{max}} = 10.027 - 0.011 \ 9 \ \times C_{\text{Cu}}$	- 0.818 *
	$V_{\text{max}}/K_m = 6.820 \ 6 - 0.006 \ 9 \ \times C_{\text{Cu}}$	- 0.889 *		$V_{\text{max}}/K_m = 3.287 \ 3 - 0.003 \ 8 \ \times C_{\text{Cu}}$	- 0.912 *
	$k = 2.3953 - 0.0023 \times C_{Cu}$	- 0.876 *		$k = 1.312 8 - 0.001 5 \times C_{Cu}$	- 0.829 *
3	$V_{\text{max}} = 6.897 \ 2 - 0.006 \ 3 \times C_{\text{Cu}}$	- 0.824 *	6	$V_{\text{max}} = 5.199 \ 8 - 0.005 \ 6 \ \times C_{\text{Cu}}$	- 0.856 *
	$V_{\text{max}}/K_m = 4.238 - 0.0051 \times C_{\text{Cu}}$	- 0.821 *		$V_{\text{max}}/K_m = 2.464 \ 8 - 0.003 \ \times C_{\text{Cu}}$	- 0.770
	$k = 1.171 - 0.0013 \times C_{Cu}$	- 0.834 *		$k = 0.7739 - 0.0009 \times C_{Cu}$	- 0.819 *

3 结 论

(1) 土壤铜污染质量浓度相同时,随着土壤肥力 水平的升高,土壤脲酶活性增强;铜可以明显抑制土 壤脲酶活性,除5号土样的3个处理外,铜质量浓度 与土壤脲酶活性之间达显著或极显著负相关。供试 土壤轻微和严重污染时,铜质量浓度分别为94.00~ 151.75 mg/kg和470.40~759.28 mg/kg;土壤受 铜轻微及严重污染的浓度随土壤肥力水平降低而减 小,而尿素浓度对土壤生态剂量值影响不大。

(2)随铜质量浓度增大,土壤脲酶 V_{max}、V_{max}/ K_m和 k 减小,二者关系达显著或极显著负相关,K_m 值总体呈增加趋势,但仍处于同一数量级,表明铜可 降低脲酶-尿素复合物解离的速度,使酶促反应变 慢,揭示出铜对土壤脲酶的作用机理为混合型抑制, 其中包含微弱的竞争性抑制,但以非竞争性抑制为 主。可见,土壤脲酶在一定程度上可表示土壤铜污 染的程度。

[参考文献]

- [1] 魏复盛,陈静生,吴燕玉,等.中国土壤环境背景值研究[J].环 境科学,1991,12(4):12-19.
- [2] He ZL, Yang X E, Peter J S. Trace elements in agroecosystems and impacts on the environment [J]. Journal of Trace Elements in Medicine and Biology, 2005, 19 (2-3):125-140.
- [3] 王松华,杨志敏,徐朗菜.植物铜素毒害及其抗性机制研究进 展[J].生态环境,2003,12(3):336-341.
- [4] Burns R G,Dick R P. Enzymes in the environment :activity, ecology and applications [M]. New York : Marcel Dekker Inc, 2002.
- [5] Moreno J L, Garcia C, Landi L, et al. The ecological dose value (*ED*₅₀) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil[J]. Soil Biol Biochem, 2001, 33(4-5):483-489.
- [6] Liliana G, Filomena S, Antonio V. Pesticide effects on the activity of free immobilized and soil invertase[J]. Soil Biol Biochem,

1995,27(9):1201-1208.

- [7] 和文祥,陈会明,冯贵颖,等. 汞铬砷元素污染土壤的酶监测研 究[J]. 环境科学学报,2000,5(3):338-343.
- [8] Sperir T W, Ketteles H A, Percival H J, et al. Is soil acidification the cause of biochemical response when soil are a mended with heavy metals salts [J]. Soil Biol Biochem, 1999, 31 (14): 1953-1961.
- [9] Speir T W, Ross D J. Feltham C W, et al. Assessment of the feasibility of using CCA (copper, chromium and arsenic)-treated and boric acid-treated sawdust as soil amendments. . Soil biochemical and biological properties [J]. Plant and Soil, 1992, 142(2):249-258.
- [10] D'Ascoli R, Rao M A, Adamo P, et al. Impact of river overflowing on trace element contamination of volcanic soils in south Italy:Part . Soil biological and biochemical properties in relation to trace element speciation[J]. Environmental Pollution, 2006, 144 (1):317-326.
- [11] Kuperman R G, Carreiro M M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem[J]. Soil Biol Biochem, 1997, 29 (2): 179-190.
- [12] 孙庆业,田胜尼.尾矿污染与几种土壤酶活性[J].土壤,2000, 32(1):54-56.
- [13] 鲍士旦. 土壤农化分析[M]. 3 版. 北京:中国环境科学出版 社,1997.
- [14] 关松荫. 土壤酶及其研究方法[M]. 北京:农业出版社, 1987.
- [15] 和文祥,韦革宏,武永军,等. 汞对土壤酶活性的影响[J]. 中国 环境科学,2001,21(3):279-283.
- [16] 滕 应,黄昌勇,龙 建,等.铜尾矿污染区土壤酶活性研 究[J].应用生态学报,2003,14(11):1976-1980.
- [17] Samborska A, Stepniewska Z, Stepniewski W. Influence of different oxidation states of chromium (,) on soil urease activity[J]. Geoderma, 2004, 122(2-4):317-322.
- [18] 周礼恺. 土壤酶学[M]. 北京:科学出版社, 1987.
- [19] 和文祥,朱铭莪.陕西土壤脲酶活性与土壤肥力关系分析[J].土壤学报,1997,34(4): 392-397.
- [20] 和文祥,马爱生,武永军,等. 砷对土壤脲酶活性影响的研 究[J].应用生态学报,2004,15(5):895-898.