樟疫霉菌多聚半乳糖醛酸酶 16 和 17 基因的 克隆、测序及其真核表达研究

巩振辉, 吕元红, 王晓敏

(西北农林科技大学 园艺学院,陕西 杨凌 712100)

[摘 要] 研究优化了樟疫霉菌多聚半乳糖醛酸酶 P_{cpg} 16 和 P_{cpg} 17 基因克隆的 PCR 条件,并对其进行了 克隆、测序和遗传转化研究。克隆获得了 2 个基因,其大小均为 996 bp; 通过构建表达载体和遗传转化获得了 2 个 基因的转基因菌系; 这 2 个基因均能指导合成相应的 PG 酶。与对照 A_{npg} I 相比,转化 P_{cpg} 17 基因的酵母菌所分 泌的多聚半乳糖醛酸酶 (PG)活性较弱,而 P_{cpg} 16 基因指导合成的 PG 酶无活性。W estern blotting 表明,所克隆的 2 个基因指导合成的 PG 酶均有不同程度的糖基化。

[**关键词**] 疫病病原菌; *P cp g* 基因; 基因克隆与测序; 基因表达; PG 活性

[中图分类号] Q 78 [文献标识码] A

[文章编号] 1671-9387(2005)06-0001-06

植物细胞壁是植物抵御病原菌的物理屏障。病 原菌通过分泌细胞壁降解酶而分解寄主植物细胞 壁,不仅为其顺利侵入寄主组织打开了屏障,而且从 其酶解过程中获得了满足自身生长、繁殖及定殖于 寄主植物所必需的营养物质。细胞壁降解酶包括多 聚半乳糖醛酸酶(PG)、果胶裂解酶、果胶甲基酯酶 和 β半乳糖苷酶,这些酶通过作用于中性支链残基 而使果胶聚合体的分子量降低^[1]。由于 PG 是病原 菌侵染寄主植物首先分泌的细胞壁降解酶,因此, PG 的研究受到了广泛的关注。

人们已从许多病原菌(如细菌病原菌 E w ina carotovora 等; 真菌病原菌A spergillus niger,A. aculeaus,A. f lauus,A. oryzae,A. parasiticus,A. tcubingensis, B otry tis cinerea, Clavicops pwparoa, Cachliobalus carbonum, Calletotrichum lindem uthianum, Cryphonectria parasitica, Fusariuvc monitif om e, F. arysporum f sp. tycopersici, Ophiostron a novo-ulmi, Penicillium janthinellum, P. griseoroseum 和 S clerotinia sclerotorum; Phytophthora infestans 和 Phytophthora cryptogea 等)^[2-10]中分离出多 种 PG,并对其生化特性进行了较为详尽的研究。然 而人们对严重危害生态环境的樟疫霉 PG 的认识极 其肤浅。2001~2004 年, 澳大利亚国立大学植物病

原菌与植物交互关系研究实验室(以下简称植病与 植物关系实验室) 与陕西省农业分子生物学重点实 验室合作进行了樟疫霉多聚半乳糖醛酸酶(Pcpg) 基因的克隆与鉴定工作, 植病与植物关系实验室先 期从构建的 P cPG 基因组文库中筛选出包含 19 个 不同 P cp g 基因的重组子,这些重组子是在 pB luescript KS+ 的 S al 位点(或 P st I, H ind III, X ho I 位点) 插入大小为 7~12 kb 的 PC (P. cinnam om i) 基因组DNA 连接而成, 对这些重组子的 PC 基因组 片段进行了测序、分析后,认为 PC 基因组含有 19 个 Pcpg 基因(其中 2 个 Pcpg 基因序列不完整, 3 个 P cpg 假基因, 3 个含有突变的 P cpg 基因), 这些 序列已被 GenBank 接受 (接受号 A F 398105, AF398936~ AF398948)^[11]。但对这些基因表达的完 整序列、所表达的 PG 活性及是否所有的 P_{cpg} 基因 都是有功能的基因尚缺乏足够的认识。围绕这些问 题,本研究以已有较多研究的Anpg (A spergillus niger polygalacturonase) [基因^[12~16]为对照,以筛 选的携带不同 pg 基因的克隆子——质粒 DNA 为 模板,采用 PCR 技术 克隆获得了 Pcpg16 和 Pcpg17 基因; 通过构建 2 个 Pcpg 基因的表达载 体,将这些 P cp g 基因导入酵母菌,研究其表达 PG 活性,旨在进一步分析这些 P cp g 基因所表达的 PG

^{* [}收稿日期] 2004-09-20

[[]基金项目] 陕西省农业分子生物学重点实验室基金项目(2002-2)

[[]作者简介] 巩振辉(1957-), 男, 陕西礼泉人, 教授, 博士生导师, 主要从事蔬菜种质资源与生物技术研究。E-m ail: gzhh168@yahoa com. cn

活性及其生化特性,揭示 P cp g 基因的分子生物学基础,为疫霉属病原菌抗病基因工程的开展奠定基础。

1 材料与方法

1.1 菌种与来源

供试的樟疫霉菌 (*P hy top h thora cinnam on i*)生 理小种H1000、酵母菌W 303-1B、大肠杆菌DH5 α 和 MJ110 以及转化A npg I基因的酵母菌菌种均由植 病与植物关系实验室提供。

1.2 DNA 的提取

樟疫霉菌基因组DNA 的提取按常规方法^[17]进 行。用于克隆、酶切分析和转化的质粒DNA 采用碱 解法^[17]提取。用于测序的质粒DNA 的提取和纯化 采用Q A GEN 公司的Q A prep Spin M in iprep Kit, 提取与纯化方法参照供应商的说明。

1.3 PCR 扩增

1.3.1 PCR 引物设计与耐热聚合酶来源 根据初 次克隆含有 Pcpg16 和 Pcpg17 基因的 PC 基因组 片段的重组子序列 pg 基因预测信号肽 前肽切割 位点紧接的 pg 基因 5 和 3 的序列(未发表)设计引 物, PcPG16E1-F (ggc gcg ccg gtg cat gta ctc tta cc), PcPG16E1-R (ggg ccc aaa tgt gga ggt gcc ttg), PcPG16E2-F (ggg ccc aag ttg tgg tct ggt ccg cta), PcPG16E2-R (tct aga tta gca cgg gac att gga), PcPG17E2-F (ggc gcg ccg gcg cct gca ctc tca cc), PcPG17E2-R (ggg ccc gac cat aac ata ggc gca aac gtg ga), PcPG17E3-F (ggg ccc act agt cct ggt gaa agg) 和 PcPG17E3-R (tct aga cta gca cag gac att gga)分别由 Sigm a Geno sys Australia Pty. L td 公司 和GeneWorks Pty. Ltd 公司合成。PCR 反应所用的 耐热聚合酶 Vent[®]为New England BioLabs 公司产 品; pfu 为L ife Technologies 公司产品; RED Tag[™] 为 Sigm a 公司产品。

1. 3 2 PCR 反应液组成与 PCR 反应条件 $P cpg 16 \ \pi P cpg 17$ 基因的克隆以质粒 DNA 为模 板,根据测序结果,通过改良 PCR 反应液中模板 DNA 浓度 $M g^{+2}$ 浓度,或用不同的耐热聚合酶 (RED T aq, Vent $\pi pf u$),或调整 PCR 反应时的退 火温度和时间,以扩增获得无突变序列。PCR 扩增 在 GeneW orks 的 PTC-200 DNA Engine PCR 机上 进行。扩增获得的无突变的不同基因或基因片段用 于连接和测序。 1.3.3 PCR 产物的纯化、连接与转化大肠杆菌 参照文献[18,19]的方法进行。

1.4 **菌落** PCR

大肠杆菌菌落的 PCR 和酵母菌菌落的 PCR 参 照文献[17,18]的方法进行。

- 1.5 酶切分析、测序、酵母菌的遗传转化与质粒 DNA 提取 参照文献[18,19]的方法进行。
- 1. 6 蛋白质的分离 Western blotting 和 PG 活性 的检测

参照文献[18,19]的方法进行。

2 结果与分析

2 1 Pcpg16 和 Pcpg17 基因的克隆与测序

对初克隆的 Pcpg 16 和 Pcpg 17 基因, 用W isconsin GCG Package Version 8 1 和BLA STX 软件 进行DNA 序列分析及蛋白质序列的推导与分析。 结果表明, P cp g 16 基因有 1 个内含子(72 bp) 和 2 个外显子,预测信号肽为MKAFSAL TTVLL-LANTTAEA,前肽切割位点位为PALE。Pcpg17 基因有 2 个内含子(分别为 64 和 60 bp) 和 3 个外显 子,前肽切割位点位为 PAL K。同源性分析表明, Pcpg16DNA 序列与Pcpg 1, 2, 4, 9, 10 的同源性分 别为 79%, 79%, 90%, 78% 和 70%, 与 P. inf estans 内切 PG m RNA 的同源性为 84%, 而与 A npg I, Anpg II 及 Penicillium janthinellum 的 pg 无同源 性; P cp g 17 DNA 序列与 P cp g 1, 2, 4, 9, 10, 16 的同 源性分别为 76%, 80%, 88%, 72%, 71% 和 88%, 与 P. inf estans 内切 PG m RNA 的同源性为 82%, 而与 Anpg I, Anpg II及 Penicillium janthinellum 的 pg 无同源性。由于 P cp g 17 基因的第1 个外显子在推 测的前肽切割位点前,即其转录、加工后将从 Pcpg17 酶蛋白上自然切除。因此, 未克隆 Pcpg17 的 E1 片段,只扩增其后的 E2 和 E3 序列。其方法是 分别以携带 Pcpg 16 和 Pcpg 17 基因的质粒 DNA 为模板,用优化的 PCR 条件扩增获得了 2 个基因的 4 个基因片段, 电泳分离纯化后, 将其分别插入 PCR 载体——pCR2 1 Vector 或 pCR-B lunt II-TO PO。 再转化大肠杆菌,经菌落 PCR 和酶切分析后,进行 了DNA 序列测定和分析,结果表明, P cp g 16 基因 全长 996 bp (图 1), 其中 E1 168 bp, E2 828 bp; Pcpg17基因全长也是 996 bp (图 1), 其中 E2 168 bp, E3 828 bp.

Pcpg16 sequence	GGTGCATGTA	CTCTTACCGG	AGACTACATC	AACAACACCG	ATGTGAGCAA	GTGCGATACC	ATTATCGTCG	ATTCACTGCG
GGTGCCTGCT GGTGTGATGT	TGAATTTGAC	GAATTTGCAA	GACAATACCA	AAGTCTCATT	CCAAGGCACC	TCCACATTTG	GGCCTAAGTT	GTGGTCTGGT
CCGCTAGTCA ACCTGAAAGG	AAACAACATT	ACGGTTACTG	GCCCTGGTAC	GCTTGACGGT	CAGGGTGCTT	GGTACTGGCC	CCAAGGACAG	AAGGTCAAGA
AGCCGGTCTT CTTCAACATA	CTCGAGGCGA	ACCATTCGAC	GCTTTCTGGA	TTCACCCTGT	TGAATATGCC	GTACCGCACT	TTCAGCATCT	ATTATTCCAA
CTACACCACG ATCACCGGGC	TGACACTCAA	TTCAAGTGCA	GGAGACGGTG	TTGCTAAAAA	CACGGACGGG	TTCGATCTTC	TTGGGAACGA	CCATTTCACG
ATCACAAAGA ACCGAGTTTA	CAATCAGGAC	GACTGCCTCG	CCATGCAATC	CAGCACCAAT	ATTGTCTTCA	GCGACAATTA	TTGCTGCGGC	TCTCACGGCA
TTTCGATCGG CTCTCTCGGT	GGCCCAGTGC	TAAATTCGTC	TACCACGGTG	AACGGACTCA	CGGTCACCGG	TAACACAATT	GTGAACAGTA	CCAACGGCAT
CCGTATCAAG ACCATCATCG	GCCTCAAGGG	CCTCGTCACC	AACGCCGTCT	ACACCAACAA	TACCCTGATC	AACGTCACCA	ACGCCATCGT	GGTGCACTCG
GACTACAATA AGACCCAGGG	TGGCTATGCT	GGCAAACCCA	CGAGTTTGGT	AAAAATTACC	AATATCAAGA	TTGACGGGCT	GAAGGGAACG	GCTAAAAACC
TGTACGACAT CGTGGCTAAT	CCGGACGTTG	TGTCTGACTG	GTGGTTCACG	AACATTGACG	TTACAGCTTC	GAGCAACGGT	AATTGCACCG	GCGAGCCGTC
CAATGTCCCG TGCTAA								
Pcpg17 sequence	GGCGCCTGCA	CTCTCACCGG	AGACTACATC	AACAATACCG	ATGTGAGTAA	GTGCAGCACC	ATCATCATCG	ACTCGCTGCG
GGTGCCTGCA GGTGTCCAAC	TGAATTTGAC	GGATTTGCAA	GACAATGCCA	AAATCAAATT	TCAGGGCACT	TCCACGTTTG	CGCCTATGTT	ATGGTCTGGC
CCACTAGTCC TGGTGAAAGG	AAAACACATT	ACTGTTACTG	GGCCTGGCAC	GCTTGACGGT	CAGGGTGCTT	GGTACTGGCC	CAAGGGACAG	AAAGTCACGA
AACCGGTCTT CTTCAGGATC	CTTAACACGA	CCCATTCGAC	GTTTACCGGA	TTCAACATGT	TGAACATGCC	GTACCGCACT	TTCAGTGTCT	GGGATTCCAA
CTACACCACC ATCTCCGGAC	TCAAGCTCAA	TTCTAGTGCC	GGAAATGGAG	TCGCCAAAAA	CACGGACGGG	TTCGATCTTA	GCAGGAACAA	CCACGTCACG
ATCACCAAGA ACCGAATTTA	CAACCAGGAT	GATTGTCTCG	CCATGCAATC	CAGCAAAAAT	ACCGTGTTCA	GCGACAATTA	TTGTTGCGGC	TCCCACGGCA
TTTCCGTCGG ATCTCTTGGT	GGTCCAGTGC	TAAATTGGAC	TACCACGGTG	GACGGACTCA	CGGTCACGGG	TAACACAATT	GAGAACAGTT	CCAACGGCAT
CCGTATCAAG ACCATCGTCG	GCCTCAAGGG	CCTCGTCACC	AACGCCGTCT	ACACCAACAA	TACCCTGATC	AACGTCACCA	ACGCCATCGT	GATGCACTCG
GACTACAATA AGACCAAGGG	TGGCTATGAT	GGCACACCCA	CGAGTTTGGT	AAAAATTACC	AAAATCAAGA	TTGACGGGCT	GAAGGGAACG	GCTGAAAACC
TGTACGACAT CGTGGCTAAC	CCGGACGTTG	TGTCTGACTG	GTCGTTCACG	AACATCAAGG	TCGTAGCTTC	GAACAACGGT	AATTGTACCG	GTGAGCCATC
CAATGTCCTG TGCTAG								

图 1 Pcpg 16 和 Pcpg 17 基因序列

Fig. 1 Sequence of *P cp g* 16 and *P cp g* 17

2 2 *Pcpg*16 和 *Pcpg*17 基因的连接与遗传转化
 2 2 1 *Pcpg*16 和 *Pcpg*17 基因表达载体的构建与
 连接 *Pcpg*16 和 *Pcpg*17 基因表达载体的构建, 就
 是将克隆的 *Pcpg*16E1 和 *Pcpg*17E2 基因片段分别
 经*A sc* I-*Apa* I 双酶解, 获得具有*A sc* I-*Apa* I 的
 粘性末端; *Pcpg*16E2 和 *Pcpg*17E3 基因片段分别

经*Apa* I-*x ba* I 双酶解,获得具有*Apa* I-*x ba* I 粘 性末端,按 3 段连接法,同时插入所构建的切除了 *A npg* I 基因的酵母菌表达载体^[17]的*A sc* I-*x ba* I 位点(图 2)。连接反应液转化大肠杆菌后,菌落 PCR 和酶切分析表明,获得了 *P cpg* 16 和 *P cpg* 17 基因的 表达载体。

图 2 Pcpg 16 和 Pcpg 17 基因表达载体的构建示意图

Fig. 2 Sketch map of construction of expression vector containing P cp g 16 and P cp g 17

2 2 2 P cp g 16 和 P cp g 17 基因的遗传转化 酵母 菌菌种W 303-1B 与植物不同,不含有 p g 基因,自

身不能合成 PG 酶, 因此是研究 pg 基因遗传转化的 理想宿主。将所构建的 P cpg 16 和 P cpg 17 基因表达 载体分别导入尿嘧啶缺陷型宿主酵母菌种W 303-IB, 由于所构建的 pg 基因表达载体携带尿嘧啶合 成基因, 因此非转化 pg 基因系不能在不含尿嘧啶 (选择培养基)的培养基上生长, 只有转基因系才能 在选择培养基上生长。通过遗传转化, 在选择培养基 上分别获得了上述 2 个基因的转化菌落, 并通过 PCR 进行了检测和证实。

2 3 转化 PG 基因系的W estern bbtting 与 PG 活 性检测

2 3 1 转化 PG 基因系的W estern bbtting 分析 pg 基因的表达载体含有 α 因子前体蛋白序列,其在 PG 被分泌之前,在信号缩氨酸酶和 Kex2 蛋白酶的 酶解作用下将 PG 蛋白质裂解下来分泌至细胞外。 为了确定转化 pg 基因的酵母菌在含有半乳糖培养 液中的适宜诱导培养时间,进行了 0~ 24 h 诱导培 养试验,结果表明, pg 基因经 4 h 的诱导即可获得

N. T represents untransformed yeast line)

以转化A npg I 基因的酵母菌作为阳性对照, 以未转化的酵母菌W 303-1B 作为阴性对照,将转化 P cpg 16 和 P cpg 17 基因的酵母菌接种在含多聚半 乳糖醛酸的琼脂糖培养基上,在 28 的条件下培 养,分别在第 2 天和第 3 天进行钉红染色。结果表 明, P cpg 17 是有功能的基因,其转化的酵母菌所分 泌的 PG 酶降解了培养基中的多聚半乳糖醛酸,使 较为理想的Western blotting 结果。

转化不同 P cpg 基因的酵母菌在含有半乳糖的 PG 诱导培养基上分别经 4 h 的诱导,采集不同菌系 的诱导培养液作为 SDS-PA GE 样品,采用第一抗体 (老鼠单克隆抗体)Anti-HA (转基因菌系携带 3 × HA 标记)和第二抗体Anti-Mouse IgG 进行Western blotting,结果表明,同转化A npg I基因的酵母 菌菌系一样,所有供试的转化 P cpg 基因的菌系均 出现了大小不同、深浅不一、连续的多条印迹带(图 3),这一结果同Wubben 等^[20]在曲霉菌(A. niger) 和灰霉菌(B. cinerea)上的研究结果一致。

2 3 2 PG 活性的检测 含多聚半乳糖醛酸的琼脂糖培养基可用于检测细菌、真菌和转化*pg* 基因酵母菌的 PG 活性^[18]。从理论上来说,1个酵母菌经相同条件和相同时间培养,其菌落经钉红染色后,所形成的晕圈越大、越深,则该菌所分泌的 PG 活性越强;反之,PG 活性越弱。

图 4 转化不同 P cp g 基因的酵母菌系的 PG 酶活性

1. 阳性对照(A npg I); 2. 阴性对照(非转化酵母菌);
 3. Pcpg16; 4. Pcpg17

Fig. 4 PG activity of different transgenic

yeast lines with P cp g 16 and P cp g 17

Positive control(transgenic yeast lines with A np g I);
 N egative control(untransformed yeast line);
 PG activity of transgenic yeast lines with P cp g 16;

4 PG activity of transgenic yeast lines with $P \phi g 17$,

钉红渗入其菌落周围培养基而引起着色(图 4)。相 对于对照A npg I,转P cpg 17基因的酵母菌所引 起的着色点小且颜色浅,这说明转P cpg 17基因 的酵母菌所分泌的 PG 酶活性低于A npg I。而转P cpg 16基因的酵母菌菌落周围培养基未着色(图 4),这一结果说明,其转化的酵母菌不能分泌具有活 性的 PG。 为了排除 *Pcpg*16 基因在与表达载体连接时, 因酶切和连接过程引起突变而导致其转基因系无 PG 活性的可能。本试验从转化 *Pcpg*16 基因的酵母 菌菌系,提取质粒 DNA 转化大肠杆菌,再分别提 取、纯化 *Pcpg*16 基因的表达载体,经再次测序证 明,*Pcpg*16 基因序列完整无误,即 *Pcpg*16 转基因 系无 PG 活性是基因本身表达的结果。

3 讨 论

Western blotting 结果表明, Pcpg 16 基因能指 导合成相应的分泌蛋白质。但 PG 活性试验说明, Pcpg16 基因所指导合成的分泌蛋白质无 PG 活性。 这和已报道的 P cp g 1 基因的表达一样^[18]。用樟疫霉 菌感染桉树(Eucalyp tus sieberi)7 d 苗龄幼苗, 诱导 Pcpg 基因的表达,提取其mRNA 进行RT-PCR 分 析,结果表明,经4,8,12和24h的诱导,Pcpg2,4, 7,9,10和17均能扩增出目的条带,说明能产生相 应的mRNA; 而 P cp g 1, 16 和 19 均未扩增出目的 条带(结果尚未发表),说明不能产生相应的mR-NA。为了弄清这些不能产生相应mRNA 的基因, 是由于基因之间的互作而限制了其的表达, 还是由 于基因内部的原因使其不能表达,以及其完整基因 表达的产物是否具有 PG 活性。为此,本研究利用基 因组DNA 对所有的 Pcpg 基因进行了克隆和表达 研究,结果表明,这些不能被疫霉菌诱导的 P cp g 基 因不能在mRNA 水平上表达,其完整基因虽能合成 相应的蛋白质, 但不表达 PG 活性。这一结果说明, 这些转化酵母菌系无 PG 活性的 P cpg 基因在樟疫 霉菌感染植物时并不表达。那么,这些基因在何种情 况下表达,所表达的无 PG 活性的蛋白质的生理功 能是什么,以及这些 P cp g 基因在疫霉菌进化中的

作用等相关问题,尚待于进一步研究。

根据已研究的结果,除转化 *P cp g* 1^[18], *P cp g* 16 和 *P cp g* 19(尚未发表)基因的酵母菌,及未转化 *p g* 基因的酵母菌所分泌的蛋白质没有 PG 酶活性外, 其余均具有活性。但转化不同 *p g* 基因的酵母菌所 分泌的 PG 酶活性有明显差异,这种不同 *P cp g* 基因 功能的有无以及 PG 酶活性的差异,可能是樟疫病 原菌进化的结果。

PG 的不同糖基化在曲霉菌(A. niger)和灰霉菌(B. cineraea)上均有报道^[20]。本研究的W estern blotting 结果表明,供试的 2 个 P_{CPg} 基因的相应 PG 均有不同程度的糖基化,糖基化可产生于N-端, 也可产生于 C-端。PG N-端糖基化的可能功能与 PG 的稳定性有关^[21],或与其在恶劣环境中分泌的 酶所产生的抗性有关^[22]。A. niger PG 在非变性条件 下去糖基化将导致其完全钝化,这表明糖基化可能 是影响 PG 酶活性的关键因素^[23]。

P. cinnam an i PG 的另一个结构特征是C-端或 N-端是否延伸,由此可将其分为 3 类,即N-端未延 伸N-端延伸和C-端延伸。与其他蛋白质相比较, PGN-端延伸表现为多样性*A. niger* 鼠李糖聚半乳 糖醛酸酶B 的 1 种C-端延伸决定了其的特异性,而 且这种特异性有别于其他已知的鼠李糖聚半乳糖醛 酸酶^[24]。值得一提的是,*A. niger* 鼠李糖聚半乳糖醛 酸酶^[24]。值得一提的是,*A. niger* 鼠李糖聚半乳糖醛 酸酶B 的C-端延伸和 *P. cinnam an i* PG 的N 端延 伸序列,均含有谷氨酰胺重复序列,即*P. cinnam an i* 含 D (P/Q) TQQQ 和NPGQN 序列,*A. nger* 的鼠 李糖聚半乳糖醛酸酶B 含有 GEQ 序列^[24],这说明 谷氨酰胺残基与果胶分子的特异性可能具有交互作 用。

[参考文献]

- De Veaal E J I, Grous K C, Huber D J, et al Degradation and solubilication of pectin by βgalactosidases prurified from arocado mesocarp
 [J] Physiol Plant, 1993, 87: 279-285.
- [2] Cole A L J. Pectin enzyme activity from Phytophthora infestans [J]. Phytochem istry, 1969, 9: 337-340
- [3] Isshiki A, A kin itsu K, N ishio K, et al Purification and characterization of an endopolygalacturonase from the rough lemon pathotype of A lternaria alternata, the cause of citrus brown spot disease [J]. Physiological and Molecular Plant Pathology, 1997, 52: 155-167.
- [4] Jarvis M C, Threlfall D R, Friend J. Potato cell wall polysaccharides: degradation with enzymes from Phytophthora infestans [J]. Journal of Experiment Botany, 1981, 32: 1 309- 1 319.
- [5] Lei S P, L in H C, Heffernan L, et al Evidence that polygalacturonase is a virulence determ inant in Env inia carotovora [J]. Journal of Bacteriology, 1985, 164: 831-835.
- [6] Martel MB, Letoublon R, Fevre M. Purification and characterization of two endopoly-galacturonases secreted during the early stages of the saprophytic grow th of S clerotinia sclerotiorum [J]. FEM SM icrobiology Letter, 1998, 158: 133-138
- [7] Martel M B, Letoublon R, Fevre M. Purification of endopolygalacturonases from S clerotinia sclerotiorum: multiplicity of the complex enzyme system [J]. Current M icrobiology, 1996, 33: 243-248

- [8] Panabieres F, Marais A, Le Berre J Y, et al Characterization of a gene cluster of *P hy top h thora cryp tog ea* which codes for elicitins, proteins inducing a hypersensitive-like response in tobacco [J]. Mol Plant M icrobe Interact, 1995, 8: 996-1003.
- [9] Pieterse C M J, V an W est P, V erbakel H M, et al Structure and genom ic organization of the *ip B* and *ip iO* gene clusters of *P hy top h thora inf estans*[J]. Gene, 1994, 138: 67-77.
- [10] Van Santen Y, Benen JA E, Schroter K H, et al 1. 68Å crystal structure of endopolygalacturonase lifrom A spergillus niger and identification of active site residues by site-directed mutagenesis[J]. J B io 1 Chem, 1999, 274: 30 474- 30 480.
- [11] A rvid G, Jerry SM, David A J, et al Characterization and evolutionary analysis of a large polygalacturonase gene family in the oom ycete plant pathogen *Phytophthora cinnam an i*[J]. Mol Plant M icrobe Interact, 2002, 15: 907-921.
- [12] George J G R, Jaap V. Characterization of A sperg illus niger pho sphoglucose isomerase U se for quantitative determination of erythrose 4pho sphate[J]. Bich mie, 1999, 81: 267-272
- [13] Jacques A E B, Harry C M K, Jaap V. Kinetic characterization of A spergillus niger N 400 endopolygalacturonases I [J]. Iiand C Eur J Biochem, 1999, 259: 577-585.
- [14] Lucie P, Harry CM K, Jacques A E B, et al Characterization of a novel endopolygalacturonase from A spergillus niger with unique kinetic properties [J]. FEBS Letters, 2000, 467: 333-336
- [15] Jeffrey W C, Robert B, Thom as E C, et al Cloning and characterization of a novel polygalacturonase-encoding gene from A spergillus parasiticus[J]. Gene, 1995, 153: 129-133.
- [16] Yovka van S, Jacques A E B, Klaus-Hasso S, et al 1. 68Å crystal structure of endopolygalacturonase II from A spergillus niger and identification of active site residues by site-directed mutagenesis[J]. The Journal of Biochem istry, 1999, 274(43): 30 474-480.
- [17] Joseph S, David W R. Molecular cloning, a laboratory manual [M]. Third edition New York: Cold Spring Harbor Laboratory Press, 2001.
- [18] 巩振辉, A rvid G, David A J. 樟疫多聚半乳糖醛酸酶 P cpg1, P cpg2 和 P cpg4 基因的克隆、测序及其遗传转化[J]. 农业生物技术学报, 2003, 11(5): 477-482
- [19] 巩振辉, A rvid Gotesson, David A Jones 樟疫多聚半乳糖醛酸酶 P cpg 9 和 P cpg 10 基因的克隆、测序及其遗传转化[J]. 西北农林科技大学学报(自然科学版), 2004, 33(8): 1-6
- [20] W ubben J P, M ulder W, Ten Have A, et al Cloning and partial characterization of endopolygalacturonase genes from Botrytis cinerea[J]. Appl Environ M icrobio1, 1999, 65(4): 1 596-1 602
- [21] Wyss D F, Wagner G. The structural role of sugars in glycoproteins [J]. Curr Opin Biotechnol, 1996, 7: 409-416
- [22] Rudd PM, Elliott T, Cresswell P, et al Glycosylation and the immune system [J]. Science, 2001, 291: 2 370- 2 376
- [23] Stratilova E, M islovicova D, Kacurakova M, et al The glycoprotein character of multiple forms of A spergillus polygalacturonase [J] J Protein Chem, 1998, 17: 173-179.
- [24] Suykerbuyk M E G, Kester H C N, Schaap P J, et al Cloning and characterization of two rham nogalacturonan hydrolase from A sp erg illus niger[J]. Appl Environ M icrobiol, 1997, 63: 2 507-2 515.

Studies on cloning, sequencing and *S accharomy ces cerev isiae* expression of *P cp g* (*P hy top h thora cinnam om i* polygalacturonase) 16 and *P cp g* 17

GONG Zhen - hu i, L U Y uan - hong, W A NG X iao-m in

(College of Horticulture, Northwest A & FUniversity, Yangling, Shaanxi 712100, China)

Abstract The components of the polymerase chain reaction and reaction parameters for cloning P cp g(*P hy top h thora cinnam an i* polygalacturonase) 16 and P cp g 17 genes were optimized The genes were sequenced, their expression vectors were determined and the genes were transformed to a yeast line, W 303-IB. Then the PG activity of transgenic lines was investigated The genes were cloned and both were 996 bp. Both P cp g 16 and P cp g 17 transgenic yeast lines were obtained, and although the two genes could synthesize the PGs, the yeast line of P cp g 16 gene did not show PG activity. The PG activity of the transgenic line of P cp g 17 gene was weaker than that of the control, A np g (A sp erg illus niger polygalacturonase) I. W estern blotting results showed that there were different degrees of glycosylation of PGs encoded by P cp g 16 and P cp g 17 genes

Key words: *P hy top h thora cinnam on i*; *P cp g* gene; gene cloning and sequencing; gene exp ression; PG activity

1