6-甲基-1-取代苯基-1, 4-二氢-4-氧哒嗪-3-羧酸的合成

马养民, 史清华

(西北农林科技大学林学院,陕西杨凌 712100)

[摘 要] 以丙酮和丙二酸为原料, 经四步反应制出 6-甲基-4-羟基-2-吡喃酮, 再与取代苯胺的重氮盐通过偶合和重排反应合成出 8 个哒嗪酮类化合物, 其中 5 个为新合成化合物。这 8 个化合物的结构均经过了元素分析, R 和¹H NM R 的验证。

[关键词] 哒嗪酮; 偶合反应; 结构表征

[中图分类号] O 626 4 [文献标识码] A

农作物增产的重要措施之一是培育杂交种子, 目前研究较多的培育杂交种子的途径有2种,一种 是三系配套法,另一种是化学杀雄法。化学杀雄法与 三系配套法相比,具有育种程序简单、育种周期短、 亲本广泛等优点。化学杀雄法的关键是化学药剂,因 此,对化学杀雄剂的研究与开发越来越受到人们的 [文章编号] 1671-9387(2004)10-0116-03

重视。

化学杀雄法在小麦杂交育种上已经取得成 功^[1],美国Rohm-Hass公司^[2]曾报道一些哒嗪酮类 化合物具有化学杀雄活性。为了寻找更理想的小麦 化学杀雄剂,本研究合成了8个哒嗪酮类化合物,其 合成路线如下:

[基金项目] 西北农林科技大学重点科研专项基金资助项目(KD00-18)

[作者简介] 马养民(1963-),男,陕西乾县人,副研究员,博士,主要从事有机合成和植物化学研究。

1 实验部分

1.1 仪器与试剂

X4 型熔点仪, PE-Spectrum One FT- ℝ 红外光 谱 仪 (KBr 压片), NOVA-400 核磁共振仪 (CDC la), PE-2400 元素分析仪。所用试剂均为分析 纯试剂。

1. 2 4-羟基-6-甲基-2-吡喃酮的制备

丙二酸亚异丙酯: 按文献[3]的方法制备。熔点 为 95.0~96.0 (文献值为 94.0~95.0), 产率 48.4% (文献值为 49.0%)。

6-甲基-4-羟基-2-吡喃酮: 以丙二酸亚异丙酯为 原料, 按文献[4]的方法制备。熔点 71.5~72.5 (文献值 71~72), 产率 83.2% (文献值 82.0%)。 1.3 4-硝基-2-氨基甲苯的制备

按文献[5]的方法制备。熔点 107~108 (文献 值 107), 产率 59.2% (文献值 62.0%)。

1.4 6-甲基-1-取代苯基-1,4-二氢-4-氧哒嗪-3-羧 酸的制备

将 15.2 g(0 22 mol)N aNO2 溶于 30 mL 水中, 将该溶液滴加到 0 2 mol 取代苯胺 80 mL 浓盐酸 和 50 mL 水的混合物中,滴加过程中保持反应液温 度在 5 以下,制得清亮透明的重氮盐溶液。

将上述重氮盐溶液在 5 以下慢慢加入到 0 2 mol 4-羟基-6-甲基-2-吡喃酮, 110 g N a₂CO₃ 和 800 mL 水的溶液中, 加完后保持在 5 搅拌 1 h, 室温 搅拌 1 h, 然后再回流搅拌 10 h, 反应液变成红色。 加入适量活性炭, 回流搅拌 5 m in, 过滤, 冷却, 用稀 盐酸调 pH 值为 1~ 2, 会产生大量沉淀, 将之抽滤 烘干后重结晶 (V снсц, V сн₃он = 1 1)。干燥后称重, 并作结构分析。

2 结果与讨论

按照上述方法合成出了具有如下结构的 8 个化 合物:

这 8 个化合物的性质及元素分析结果见表 1。 化合物 1, 2, 3, 6 和 8 分别在 843, 840, 857, 848 和 842 cm⁻¹有强的吸收, 表明分子中存在对二取代苯; 化合物 4 和 5 分别在 762 和 772 cm⁻¹有强的吸收, 表明分子中存在邻二取代苯; 化合物 7 在 877, 810 和 742 cm⁻¹均有吸收,表明其分子中存在不对称三 取代苯^[6]。

8个化合物的其他红外光谱数据十分相近,见 表 2。在¹H-NMR 谱图中, 化合物 1~8 均在 15.00~ 15. 70 ppm 处有一宽的吸收峰(- COOH),表明分 子中均有羧基。化合物1在7.56~7.34 ppm 处有4 个苯基氢,在 6 90 ppm 处有 1 个烯氢,在 2 33 ppm 处有 3 个与 sp² 杂化碳相连的甲基氢。结合 R 和元 素分析结果,表明化合物1与其分析数据完全一致。 化合物 2 和 3 也分别在相应位置有 4 个苯基氢 1 个烯氢和 3 个与 sp^2 杂化碳相连的甲基氢, 与 1 的 区别仅仅是化学位移略有变化(见表 2); ℝ 数据表 明二者均有对二取代苯,结合元素分析说明化合物 2,3 与它们的分析数据也是完全一致的。在化合物4 的^IH-NMR 谱图上, 在 7. 50~ 7. 23 ppm 处有 4 个 苯基氢,在692 ppm 处有1个烯氢,分别在221和 2 10 ppm 处均有 3 个与 sp² 杂化碳相连的甲基氢, 表明其有2个与烯碳或芳环相连的甲基。ℝ指出其 有邻二取代苯,再结合元素分析表明化合物 4 与其 分析数据完全吻合。化合物5的ℝ指出其与化合物 4 一样, 分子中有邻二取代苯。化合物 5 的¹H-NM R 与化合物 4 相比, 在 2 10 ppm 处的甲基氢信号消 失, 而在 3 88 处出现了甲氧基氢的信号峰, 再结合 其元素分析说明化合物 5 的结构与其分析数据也完 全一致。化合物6的 ℝ 指出分子中有对二取代苯, 其'H-NMR 谱图在 7. 28~ 7. 00 ppm 处有 4 个苯基 氢信号,在 6 90 ppm 处有 1 个烯氢信号,在 2 32 ppm 处有与 sp² 杂化碳相连的甲基氢信号, 除此之 外,在4 09 ppm 处有2个氢的四重峰(J=68Hz) 信号,在1.46 ppm 处有3个氢的三重峰(J=6.8 Hz) 信号, 表明有乙氧基存在。这些说明分子结构与 分析数据是一致的,元素分析结果也与其结构一致。 化合物 8 的¹H-NM R 谱图与化合物 6 相比, 乙氧基 信号消失, 而在 3 88 ppm 处出现了一个甲氧基信 号,说明6与8的差别就在于将乙氧基换成了甲氧 基。化合物 7 的 ℝ 指出分子中含有不对称三取代 苯,同时其¹H-NMR 谱图分别在 8 37,8 22和 7.65 ppm 处有 3 个苯基氢的信号, 在 6 97 ppm 处有 1 个烯氢信号,在2 30 和 2 21 ppm 处分别有 2 个与 sp² 杂化碳相连的甲基信号,结合元素分析结果可以 看出,化合物7的结构与其分析数据完全一致。

表1 8个化合物的性质和组成

Table 1 The properties and contents of 8 compounds

编号 No	R	相对分子	熔点/ M elting point	颜色 Color	产率/% Yield	元素分析/% Elemental analysis					
		质量 Molecular weight				实测值 Tested value			计算值 Calculated value		
						С	Н	Ν	С	Н	N
1		264.67	229~ 331	白色White	79.51	54.60	3 52	11.81	54.46	3. 43	10 58
2		309.12	232~ 233 分解 Decomposed	白色White	89.70	46 93	3.11	10 19	46 62	2 93	9.06
3		248 21	192~ 193	淡红色Light red	70 08	58 45	3 90	11. 50	58 07	3. 65	11. 28
4		244. 25	207~ 209	白色White	77.62	63 51	5.32	11.75	63 92	4. 95	11.47
5		260 25	170~ 171	黄色 Yellow	69. 25	60 18	4 99	11. 01	60 00	4.65	10 76
6		274.28	147~ 148	淡黄色Light yellow	81.16	61. 40	5. 43	10 50	61. 30	5.14	10 21
7		289. 25	219~ 221	棕黄色 B row n ⁻ yel- low	76 74	53 71	4. 02	14.72	53 98	3. 83	14.53
8		260 25	166~ 167	∑ 淡黄色Light yellow	80 09	59.87	4.52	11.97	60 00	4.65	10 76

表 2 8 个化合物的 IR 和¹H -NM R (CDC l3) 数值

Table 2 \mathbb{R} and 1 H-NMR (CDCl₃) data of 8 compounds

编号No	$\mathbb{R}/\mathbb{cm}^{-1}$	¹ H 'NM R /ppm
1	3 047, 735(s), 630(s), 1 563, 1 513, 1 488(s), 1 294, 1 086, 1 018, 843(s)	15. 25(b, 1H), 7. 45(q, 4H), 6. 90(s, 1H), 2. 33(s, 3H)
2	3 047, 1 729(s), 1 621(s), 1 568, 1 518, 1 486(s), 1 291(s), 1 068, 1 016, 840(s)	15. 22(b, 1H), 7. 49(q, 4H), 6. 89(s, 1H), 2. 33(s, 3H)
3	3 051, 1 748(s), 1 622(s), 1 599(s), 1 551, 1 509, 1 437(s), 1 291(s), 1 094, 1 021, 857(s)	15. 29(b, 1H), 7. 46(q, 4H), 6. 87(s, 1H), 2. 30(s, 3H)
4	3 059, 1 741(s), 1 616(s), 1 561, 1 515, 1 490(s), 1 293, 1 093, 1 027, 762(s)	15, 40(b, 1H), 7, 36(m, 4H), 6, 92 (s, 1H), 2, 21(s, 3H), 2, 10 (s, 3H)
5	3 058, 1 733(s), 1 603(s), 1 568, 1 502(s), 1 442, 1 281, 1 096, 772(s)	15 62(b, 1H), 7 31(m, 4H), 6 89(s, 1H), 3 88(s, 3H), 2 25 (s, 3H)
6	3 124, 1 736 (s), 1 612 (s), 1 550, 1 503 (s), 1 441(s), 1 285, 1 098, 848(s)	15. 50 (b, 1H), 7. 14 (q, 4H), 6. 90 (s, 1H), 4. 09 (q, 2H, $J = 6.8$ Hz), 2. 32 (s, 3H), 1. 46 (t, 3H, $J = 6.8$ Hz)
7	3 110, 1 743 (s), 1 617 (s), 1 599 (s), 1 519 (s), 1 439, 1 280, 1 081, 877, 810, 742(s)	15. 12 (b, 1H), 8. 37 (q, 1H, $J = 2$, 4, 8. 4 Hz), 8. 22 (d, 1H, $J = 2$, 4 Hz), 7. 65 (d, 1H, $J = 8$, 4 Hz), 6. 97 (s, 1H), 2. 30 (s, 3H), 2. 21 (s, 3H)
8	3 113, 1 749(s), 1 620(s), 1 560, 1 508(s), 1 439, 1 276, 1 099, 842(s)	15, 40(b, 1H), 7, 16(q, 4H), 6, 90(s, 1H), 3, 88(s, 3H), 2, 32 (s, 3H)

从表 1 中 8 个化合物的反应产率可以看出, 偶 合反应中苯胺的取代基及取代基的位置对反应的产 率有较大影响: 位阻影响。对甲氧基和乙氧基产物 比邻甲氧基和甲基产物的产率高, 这是因为对位取 代比邻位取代位阻小的缘故; 邻甲基比邻甲氧基产

118

物的产率高,这是因为邻位取代,基团越大位阻越 大。 电子效应。同是对位取代,F,Cl,Br的取代产 物的产率依次升高,这是因为F,Cl,Br的吸电子能 力越来越弱,也就是给电子能力越来越强之缘故;化 合物4比化合物7的产率高也是由此因引起的。

[参考文献]

[1] 侯国裕, 黄荣初, 王兴凤, 等. 新化学杀雄剂 KM S-1 的合成[J]. 农药, 1981, (5): 32-33.

[2] 《Chem ical week》编辑部 化学品在小麦杂交中的作用[J]. 农药译丛, 1986, 8(3): 26-27.

[3] Davidson D, Bernhard S A. The structure of meldrum's supposed β lactonic acid[J]. J Am Chem Soc, 1948, 70(3): 3426-3428

[4] 陈万义, 花冬梅 化学杂交剂哒嗪酮酸钾的合成[J]. 农药, 1997, 36(6): 13-15.

[5] 韩广甸, 赵树维, 李述文, 等. 有机制备化学手册(中卷) [M]. 北京: 化学工业出版社, 1980. 301.

[6] 唐恢同 有机化合物的光谱鉴定[M] 北京:北京大学出版社, 1992 132

7

(下转第122页)

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

[参考文献]

- [1] Chanson H. Hydraulics of stepped spillways: current status [J] Journal of Hydraulic Engineering, A SCE, 2000, 9: 636-637.
- [2] 陈 群, 戴光清 鱼背山水库岸边阶梯溢洪道流场的三维数值模拟[7]. 水力发电学报, 2002, (3): 62-71.
- [3] ChamaniM R, Rajaratnam N. Discussion about jet flow on stepped spillways[J]. Journal of Hydraulic Engineering, A SCE, 1995, 5: 446-448
- [4] Matos J, Quintela A. Discussion about jet flow on stepped spillways [J]. Journal of Hydraulic Engineering, A SCE, 1995, 5: 443-444
- [5] Rao P V, Rao P L N. Discussion about jet flow on stepped spillways[J]. Journal of Hydraulic Engineering, A SCE, 1995, 5: 444-445.
- [6] Chanson H. Discussion about jet flow on stepped spillways [J]. Journal of Hydraulic Engineering, A SCE, 1995, 5: 441-442
- Yasuda Y, TakahashiM, Ohtsu I Energy dissipation of skimming flows on stepped chute [A]. Chinese Hydraulic Engineering Society.
 29th AHR Congress Proceedings [C]. Beijing: T singhua U niversity Press, 2001. 531-536

The dissipation characteristics on stepped spillways of different slopes

TIAN Jia-ning¹, LI Jian-zhong¹, Ohtsu Iwao², YE Lin¹, Ya suda Yoichi²

(1 Institute of W ater R esources and Hydro-electric Engineering, X i an University of Technology, X i an, S haanx i 710048, China;
 2 College of S cience and Technology, N ihon University, Tokyo 101-8308, J ap an)

Abstract: The model experiment on stepped spillway with three different slopes (5.7°, 19° and 30°) shows that energy dissipation ratio under skimming flow, transition flow or nappe flow, would not be confined by the relative critical water depth on weir $(y_c/h = 2.5)$, and it is only the function of relative dam height (H_{dam}/y_c) and angle of slope Energy dissipation ratio increases while slope grading down or H_{dam}/y_c rising W hen H_{dam}/y_c is certain, the difference of energy dissipation ratio under skimming flow, transition flow and nappe flow is insignificant and the number of steps does not affect the energy dissipation ratio; In addition, this paper offers the experiental formula to calculate the energy dissipation ratio.

Key words: stepped spillw ays; dissipation characteristics; skimming flow; transition flow; nappe flow

(上接第118页)

Synthesis of 6-methyl-1-substituted phenyl-1, 4-dihydro-4-oxo-pyridazine-3-carboxylic acids

MA Yang-min, SHI Qing-hua

(College of Forestry, N or thw est Sci-Tecch University of Agriculture and Forestry, Yangling, Shaanxi 712100, China)

Abstract 5 new pyridazinone compounds, together with 3 known pyridazinone compounds were synthesized throng coupling and rearrangement reactions from substituted phenyl diazonium salts and 4-hydroxy-6-methyl-2-pyrone which were prepared from malonamic acid and acetone via 4 steps The structures of 8 compounds were determined by elemental analysis, \mathbb{R} , and ¹H-NMR.

Key words: pyridazinone; coupling reaction; structure characterization