第28卷 第3期 2000年6月 西北农业大学学报 Acta Univ. Agric. Boreali-occidentalis Vol. 28 No. 3 Jun. 2000

[文章编号]1000-2782(2000)03-0107-04

抛物线形喉口式量水槽的简化流量公式

吕宏兴1,朱凤书1,董鹏2~

5277 - 9

(1 西北农林科技大学 水利与建筑工程学院,陕西 杨陵 712100; 2 石头河水库管理局,陕西 眉县 722305)

[摘 要] 用于 U 形渠道量水的抛物线形喉口式量水槽原流量公式为隐函数形式,针对其使用不便的现状,通过理论分析推导出了显函数形式的量水槽流量公式,计算结果与原流量公式比较相对误差值<0.5%。

U形渠道水力条件优越^[1]、且有占地少、工程量小、防渗效果好、耐冻胀等优点、已得到广泛应用。随着灌区价格收费体系的不断完善、解决好 U 形渠道量水技术中存在的问题尤为必要。传统的巴歇尔量水槽、用于 U 形渠道量水时,由于边墙收缩与 U 形渠道不匹配,流态紊乱,水尺附近水面波动大,堰前水位难以准确读数,流量测量精度很低;用于输钞渠道时,则因淤积严重而无法使用。"U 形渠道抛物线形喉口式量水槽"^[2]正是针对上述生产实际问题而研制的,经过近十多年来在陕西、甘肃等省的部分灌区推广应用,证明该量水槽可用于各类标准的或侧墙直线段外倾的非标准 U 形渠道量水,且测流精度较高(误差<3%),用于输钞渠道时亦有不淤积的特点。但因量水槽原流量公式为隐函数形式,需迭代计算求出流量,手算因过于复杂而难以实现;计算机编制的水位流量查算表需一堰一表,量水槽规格较多时查用亦不方便,影响了该量水槽的使用效果。本文以解决上述问题为目的,推导出了以显函数表示的流量公式,从而使流量可直接计算得出,计算过程大为简化,便于灌区生产单位使用。

1 量水槽及流量公式

抛物线形喉口式量水槽是从量水建筑物不淤积、壅水少、工程量小且方便实用的要求出发,针对 U 形渠道的量水问题而研制的^[2]。其测流原理是使量水槽抛物线形喉口断面形成收缩,产生临界流,从而在槽前构成稳定的水位流量关系。量水槽的基本结构如图 1 所示,由抛物线形喉口断面及上下游渐变段组成,喉口断面底部与渠底齐平,为无底坎型。量水槽原流量公式为^[2]:

$$Q = \left(C_d C_v h^2 \right) / \sqrt{P} \tag{1}$$

式中、Q 为流量 (m^3/s) ; C_a 为流量系数 $(m^{0.5}/s)$; C_b 为水尺断面处比能 H_o 与水深 h 之比

[收稿日期] 1999-07-05

[基金项目] 国家自然科学基金资助项目(59979023) [作者简介] 吕宏兴(1955一).男,副教授,博士。 的平方,即 $H_b^2 = C_a h^2$; h 为量水槽水尺读数,即水尺断面处的水深; P 为喉口断面抛物线形状系数 (\mathbf{m}^{-1}) ,即喉口断面曲线方程为 $y = Px^2$,见图 1 所示,其中 C_a 的计算公式为:

$$C_d = 1.96 P^{0.011} \epsilon^{-0.13} (2)$$

C。的计算公式为:

$$C_{v} = \left(1 + \frac{a_{0}C_{d}^{2}C_{v}^{2}h^{3}}{2gPA^{2}}\right)^{2} \tag{3}$$

抛物线形状系数 P 的计算公式为:

$$P = \frac{16H^3}{9\varepsilon^2 A_0^2} \tag{4}$$

式(2)、(4)中, ϵ 为喉口收缩比,表示与渠顶同高的量水槽喉口断面面积 $A_{\epsilon}(\mathbf{m}^2)$ 与渠道全断面面积 $A_{\epsilon}(\mathbf{m}^2)$ 之比,且喉口面积以 $A_{\epsilon}=\frac{4}{3}H\sqrt{\frac{H}{P}}$ 计算;式(3)中 a_{ϵ} 为动能修正系数;A 为水尺处相应于水深h 的过水断面面积(\mathbf{m}^2),H 为渠深(\mathbf{m})。

按(1)式求解流量时,要先由(3)式试算或迭代计算求出 C_v 后,才能计算出流量 Q_v

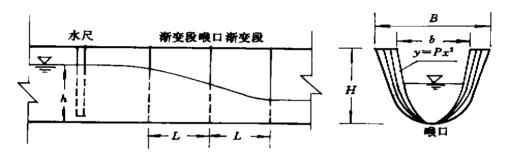


图1 U形渠道抛物线形喉口式量水槽示意图

2 流量公式的简化

上述 U 形渠道抛物线形喉口式量水槽流量公式,由于要迭代计算,不便生产中使用。就量水槽上游而言,由于堰前壅水,流速水头与水深之比为远小于 1 的量,设流速水头为 $h_v = \frac{\alpha_0 v^2}{2 \text{ g}} = \frac{\alpha_0 Q^2}{2 \text{ g} A^2}$,则由全水头 $H_0 = h + \frac{\alpha_0 v^2}{2 \text{ g}} = h + \frac{\alpha_0 Q^2}{2 \text{ g} A^2}$,可得 $\frac{H_0}{h} = 1 + \frac{h_v}{h}$,而 $C_v = \left(\frac{H_0}{h}\right)^2 = \left(1 + \frac{h_v}{h}\right)^2$,将平方项展开,并略去二次项 $\left(\frac{h_v}{h}\right)^2$,可得 C_v 的近似表达式为:

$$C_v = 1 + 2 \frac{h_v}{h} = 1 + 2 \frac{a_0 Q^2}{2 g A^2 h}$$

将 C, 代人(1) 式整理得:

$$Q^2 - \frac{\mathbf{g} A^2 \sqrt{P}}{\alpha_0 C_d h} Q + \frac{\mathbf{g} A^2 h}{\alpha_0} = 0$$

上式为关于流量 Q 的一元二次方程,求解该方程可得流量公式如下:

$$Q = \frac{\mathbf{g} \sqrt{P}}{2\alpha_0 C_d} \cdot \frac{A^2}{h} \left| 1 - \sqrt{1 - \frac{4\alpha_0 C_d^2}{\mathbf{g} P} \cdot \frac{h^3}{A^2}} \right| \tag{5}$$

对已确定的量水槽, 抛物线形状系数 P 及喉口收缩比 ϵ 为常数, 重力加速度 $g = 9.8 \, (m/s^2)$, 动能修正系数 a_0 亦可视堰上游水流流速分布情况取为常数, 本文中取 $a_0 = 1.0$, 取公式中前述各物理量组合的常数为:

$$C_1 = \frac{g\sqrt{P}}{2\alpha_0 C_d} \tag{6}$$

$$C_2 = \frac{4a_0 C_d^2}{g P} \tag{7}$$

将 C1, C2 代人式(5),故流量公式可简化为:

$$Q = C_1 \cdot \frac{A^2}{h} \left(1 - \sqrt{1 - C_2 \cdot \frac{h^3}{A^2}} \right) \tag{8}$$

对 U 形渠道[3,4],如图 2 所示,过水断面面积计算根据水深的变化分别为:

当 $h \geqslant a(a = r(1 - \cos \theta))$,即 $\Delta h \geqslant 0$ 时

$$A = \frac{r^2}{2} \left(\pi \left(\frac{\theta}{90^{\circ}} \right) - \sin 2\theta \right) + \Delta h (2 \cdot r \cdot \sin \theta + \Delta h \cdot \cot \theta)$$
 (9)

当 h<a 时

$$A = \frac{r^2}{2} \left(\pi \left(\frac{\beta}{90^{\circ}} \right) - \sin 2\beta \right)$$

$$\beta = \arccos \left(1 - \frac{h}{r} \right)$$
(10)

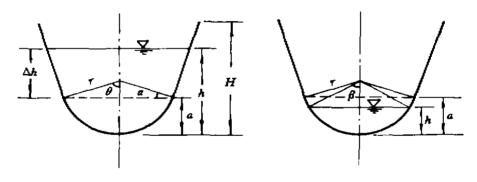


图 2 量水槽水尺断面水深 h≥a 与 h<a 示意图

式中符号如图 2 所示,a 为 U 形渠道底弧弓形高, β 为 h < a 时水面以下底弧圆心角之半。量水槽在实际测流应用中很少出现 h < a 的情况,因此,(10) 式一般不常用。而在 $h \ge a$ 时,(9) 式右端除第二项中 $\Delta h = h - a$ 外,其余项均为常数,面积 A 只是水深 h 的函数。流量计算只需代人量水槽上游水尺处过水断面面积 A 与水深 h 即可求出。

显然,公式(8)与原流量公式(1,3)相比可直接计算,不需试算,计算过程得以简化。

3 简化流量公式的计算精度

公式(8)的推导是将系数 C。中动能与势能之比的平方视为高阶小量而略去后的结果,但其计算精度是完全能够满足灌区量水要求的。表 1 列出了 4 种规格抛物线形喉口式

量水槽水力学试验实测流量与原流量公式(1)和简化流量公式(8)计算结果的比较,表 1 中佛氏数 F,由水尺所在断面水力要素计算,而 $\frac{F_r^2}{2} = \frac{h_v}{h}$,因此,从表 1 中 F,的计算值可以看出,将二次项 $\left(\frac{h_v}{h}\right)^2$ 作为小量忽略,误差是很小的。经验算,公式(8)与(1)计算的相对差值<0.5%。

表!	量水槽实测流量。	、原公式与简化公式计算流量比较
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

,	$r=0.1 \text{ m}, H=0.3 \text{ m}, \alpha=9.5^{\circ}, \epsilon=0.3$				$r=0.1 \text{ m}, H=0.3 \text{ m}, \alpha=9.5^{\circ}, \epsilon=0.5$				
水深	佛氏数	流量 Q/(し・s ⁻¹)			水深	佛氏数	流量 Q/(L·s ⁻¹)		
h/cm	F.	实测值	式(8)值	式(1)值	\hbar/cm	F_r	实测值	式(8)值	式(1)值
10	0.14	2. 1	2.124 8	2. 1	10	0. 22	3. 5	3. 367 4	3. 4
15	0.15	4.9	4.799 9	4.8	15	0.24	7.6	7.655 7	7. 7
20	0.16	8. 5	8.5637	8.6	20	0.26	13.6	13.740 6	13.8
25	0.17	13.5	13, 422 1	13. 4	25	0. 28	21.5	21.649 6	21.7
30	0, 18	19.5	19.378 2	19.4	30	0. 29	31.3	31.400 0	31. 4
r=	$r=0.15 \text{ m}, H=0.4 \text{ m}, \alpha=9.5^{\circ}, \epsilon=0.65$				$r = 0.3 \text{ m}$, $H = 0.6 \text{ m}$, $a = 8.8^{\circ}$, $\epsilon = 0.65$				
水深	佛氏數	流量 Q/(L • s ⁻¹)			水深	佛氏数	流量 Q/(L·s ⁻¹)		
h/cm	F_r	实测值	式(8)值	式(1)值	h/cm	F_r	实测值	式(8)值	式(1)值
. 10	0.27	5.3	5.374 3	5. 4	10	0. 26	7.9	8.023 3	8.0
15	0.29	12.1	12, 227 9	12. 2	15	0. 27	18.0	18.132 5	18.2
- 20	0.31	22.0	22,015 6	23.1	20	0.28	32.0	32.400 4	32.5
25	0.33	34.5	34.830 5	34. 9	25	0.30	51.0	50. 928 1	51.0
30	0.36	50.0	50, 750 0	51.0	30	0.31	74.0	73.845 1	74.0
35	0.37	69.5	69.837 7	70. 2	35	0.32	100	101.2581	101.5

注: 为底弧半径 a 为外倾角。

[参考文献]

- [1] 吕宏兴,冯家涛,明渠水力最佳断面的比较[3],人民长江,1994,(11),42-45.
- [2] 王 智,朱风书,刘晓明,平底抛物线形无喉段量水槽试验研究[J],水利学报·1994·(7):12-33.
- [3] 陕西省水利水保厅. U 形渠道[M]. 北京:水利电力出版社,1986.
- [4] 吕宏兴, U 形渠道水力最佳断面及水力计算[J], 西北水资源与水工程,1991,(4),42-47.

Simplified discharge formula for flow measurement flume with parobolic throat in U-shaped channel

LU Hong-xing1, ZHU Feng-shu1, DONG Peng2

(1 College of Water Conservancy and Architectural Engineering, Northwest Science and Technology University of Agriculture and Forestry, Yongling, Shaanxi 712100, China; 2 The Reservior Management of Store-River, Meixian, Shaanxi 722305, China)

Abstract: The original flow rate formula of parobolic throat flume used for U-shaped channel is implicit function and is not convenient for calculation in irrigation districts. An simplified formula is developed in this paper, with a difference between results calculated with the original formula and the new formula being less than 0.5%.

Key words: U-shaped canal; measuring flume; flow rate formula