双联两铰拱涵墩台与顶拱联合作用的内力计算

冯家涛 杨建国

(西北农业大学水利与建筑工程学院,陕西杨凌 712100)

摘 要 将双联两铰拱涵的墩台与拱顶视为一整体结构,考虑墩台与顶拱的协同效应, 在文克尔假设基础上,根据力法原理提出了双联两铰拱涵整体结构内力计算的新方法。 实例 计算表明,本方法不仅揭示了拱顶破坏的机理,且使拱顶设计合理,墩台体积明显减小。

关键词 双联两铰拱涵,墩台,顶拱,协同效应,内力分析

中图分类号 TV 314

双联两铰拱涵及多联两铰拱涵在水利水电工程中应用极为广泛.它们多由重力式墩 台及上部两铰拱组成,在外部荷载作用下顶拱与墩台总是协同工作,准确合理的结构分析 方法是应用有限单元法进行整体结构的内力计算,只有这样才能考虑到墩台与顶拱变形 的协调。然而这一方法相当繁琐,设计上极不方便。因而工程设计上为了简化设计及计算, 往往假定顶拱为拱座不动的两铰拱,单独计算拱及墩台的内力¹¹。 实践表明,按这一假定 设计的顶拱在拱顶处弯矩太小,而不安全;同时为保证拱座不动而设计的重力式墩台过于 胖大而不经济。为此本文根据墩台与顶拱协同工作的特点,应用力法原理提出了合理的设 计方法,供生产设计参考。

基本原理及计算公式 1

将图 1所示双联两铰拱涵,从拱座处分为 2个顶拱 1个中墩 1个边墩,共 5个脱离 体。在实际状态中,拱座处应作用着由外荷载和拱座水平位移所产生的垂直力 Va,Va, V_{C} , V_{D} 和水平力 H_{4} , H_{B} , H_{C} , H_{D} ; 方向皆以图中所示为正

图 1 受力分析图

收稿日期 1997-11-21 课题来源 陕西省水利厅节水灌溉课题资助项目

冯家涛,男, 1944年生,副教授 14 China Academic Journal Electronic Publishing House. All rights reserved. http://w

图 2 基本结构图

http://w

取顶拱的基本静定体系如图 2,忽略中墩在 *BC*间的水平压缩 (或伸长),故 $\Delta_{B=} - \Delta_{C}$ = Δ_{Z} ,由力法原理^[2]得:

$$H_{A} = H_{A}^{F} - (\Delta_{A} + \Delta_{Z}) W$$

$$H_{B} = H_{B}^{F} - (\Delta_{A} + \Delta_{Z}) W$$

$$H_{C} = H_{C}^{F} + (\Delta_{Z} - \Delta_{D}) W$$

$$H_{D} = H_{D}^{F} + (\Delta_{Z} - \Delta_{D}) W$$
(1)

式中: H_A , H_B , H_C , H_D 分别为拱座 A, B, C, D处实际产生的水平推力 (向内为正); Δ_{AP} , Δ_{BP} , Δ_{CP} , Δ_{DP} 分别为外荷载在相应基本静定体系 (相应于 Δ_{AP} 的基本静定体系如图 2,余类 推)内产生的相应水平位移 (Δ_{AP} 为 A 拱座的水平位移 ,向内为正,余类推),其值可由附表 所给公式计算; W为在基本静定体系内,基本未知力 X=1时产生的相应水平位移 (如两 跨拱结构尺寸相同,则 W亦同),其值亦可由附表公式计算; V_A , V_B , V_C , V_D 分别为拱座 A, B, C, D实际产生的水平位移,向外为正。

式 (1)中 H^F_i = - Δ_i, W,为拱座无水平位移时外荷产生的水平推力,这些推力可根据 荷载状态 结构尺寸利用附表和前面给出的公式计算。

显然,(1)式中有 7个未知数(V_A , V_B , V_C , V_D 及 Δ_A , Δ_Z , Δ_D), 但方程式只有 4个, 需补充 3个条件才可求解

设 $M_{\mathcal{E}}, M_{\mathcal{F}}, M_{\mathcal{G}}, V_{\mathcal{E}}, V_{\mathcal{F}}, V_{\mathcal{G}}, H_{\mathcal{E}}, H_{\mathcal{F}}, H_{\mathcal{G}}$ 分别为墩台上所有外荷 (包括两铰拱传来的 全部支座反力,但不包括地基反力)向墩台底部中点 E, F, G简化后得到的弯矩、垂直力 和水平力 (皆以图 1所示方向为正)。 $M'_{\mathcal{E}}, M'_{\mathcal{F}}, M'_{\mathcal{G}}, V'_{\mathcal{E}}, V'_{\mathcal{F}}, V'_{\mathcal{G}}, H'_{\mathcal{E}}, H'_{\mathcal{F}}, H'_{\mathcal{G}}$ 分别为除 拱脚传来的水平推力 $H_{\mathcal{A}}, H_{\mathcal{B}}, H_{\mathcal{C}}, H_{\mathcal{D}}$ 外,其余作用在墩台上的所有外荷 (仍不包括地基 反力),对墩台底部中点 E, F, G简化后得到的弯矩、垂直力和水平力。

$$\begin{array}{l} M_E = & M_E + & H_A h \\ M_F = & M'_F + & (H_B - & H_C) h \\ M_G = & M'_G + & H_D h \end{array}$$

$$(2)$$

$$V_E = V'_E \qquad V_F = V'_F \qquad V_G = V'_G \tag{3}$$

$$H_E = H_E - H_A$$

$$H_F = H_F' + (H_B - H_C)$$

$$H_L = H_C' + H_C$$
(4)

显然,垂直力 V_E, V_F, V_G只引起地基的均匀垂直变形,弯矩 M_E, M_F, M_G只引起地基 的不均匀垂直变形,水平力 H_E, H_F, H_G只引起墩台底面沿地基面的水平滑动 均匀垂直 变形不引起拱座的水平移动,同时在拱圈中也不产生附加内力;如设计时考虑到抗滑稳定 的 S要求,则墩台就不会产生水平滑动 于是,在拱圈中引起附加内力的各拱座的水平移 动仅与地基的不均匀垂直变形有关,也就是说与 M_E, M_F, M_G有关 假定地基反力呈直线 分布且符合文克尔假定^[3],可以导出:

$$\begin{array}{l} h_{E} = M_{E} / K_{O}I_{E} = (M'_{E} + H_{A}h) / K_{O}I_{E} \\ h_{F} = M_{F} / K_{O}I_{F} = [M'_{F} + (H_{B} - H_{C})h] / (K_{O}I_{F}) \\ h_{G} = M_{G} / K_{O}I_{G} = (M'_{G} + H_{D}h) / (K_{O}I_{G}) \end{array}$$

$$(5)$$

式中: h_{e} , h_{e} , h_{o} 分别为地基不均匀垂直变形引起的墩台转角 (图 1所示方向为正); I_{E} , I_{F} , I_{c} 为相应墩台基底截面的惯矩; K_{o} 为地基的弹性抗力系数 (亦称垫层系数),可参考文献 [1,2 选用; h为墩台底面与拱座中心间的垂直距离 (见图 1).

忽略墩台本身在外荷载作用下的剪切变形和弯曲变形,则根据几何关系得。

(6)

 Λ_{i} by Λ_{i} by

$$H_{A} = H'_{A} - K(H_{A} + nH_{B} - nH_{C})$$

$$H_{B} = H'_{B} - K(H_{A} + nH_{B} - nH_{C})$$

$$H_{C} = H'_{C} - K'(H_{D} - n'H_{B} + n'H_{C})$$

$$H_{D} = H'_{D} - K'(H_{D} - n'H_{B} + n'H_{C})$$
(7)

hat

Δ

式(7)中

$$n = I_{E} / I_{F}; n' = I_{G} / I_{F}; K = h^{2} / K_{O} I_{E} W; K' = h^{2} / K_{O} I_{G} W$$

$$(8)$$

$$H'_{A} = H^{F}_{A} - (M'_{E} + nM'_{F}) K / h$$

$$H'_{B} = H^{F}_{B} - (M'_{E} + nM'_{F}) K / h$$

$$H'_{C} = H^{F}_{C} - (M'_{G} - n'M'_{F}) K' / h$$

$$H'_{D} = H^{F}_{D} - (M'_{G} - n'M'_{F}) K' / h$$

$$(9)$$

当两边墩尺寸相同时, $I_{G}=I_{E}, n'=n, K'=K, 则由(7)$ 式得:

$$H_{A} = \frac{(1+K)(1+nK)+nK}{(1+K)(1+2nK+K)}H'_{A} - \frac{nK^{2}}{(1+K)(1+2nK+K)}H'_{D} - \frac{nK}{1+2nK+K}(H'_{B} - H'_{C})$$

$$H_{B} = -\frac{K(1+K+nK)}{(1+K)(1+2nK+K)}H'_{A} - \frac{nK^{2}}{(1+K)(1+2nK+K)}H'_{D} + \frac{1+nK+K}{1+2nK+K}H'_{B} + \frac{nK}{1+2nK+K}H'_{C}$$

$$H_{C} = -\frac{nK^{2}}{(1+K)(1+2nK+K)}H'_{A} - \frac{(1+K+nK)K}{(1+K)(1+2nK+K)}H'_{D} + \frac{nK}{1+2nK+K}H'_{B} + \frac{1+nK+K}{1+2nK+K}H'_{C}$$

$$H_{D} = -\frac{nK^{2}}{(1+K)(1+2nK+K)}H'_{A} + \frac{(1+K)(1+nK)+nK}{(1+K)(1+2nK+K)}H'_{D} + \frac{nK}{1+2nK+K}(H'_{B} - H'_{C})$$

$$(10)$$

当荷载还以中墩轴线对称分布时有: $H'_{A} = H'_{D}$, $H'_{B} = H'_{C}$,则 (10)式可简化为:

$$H_{A} = H_{D} = [1/(1+K)]H_{A}$$

$$H_{B} = H_{C} = [(-K)/(1+K)]H_{A}' + H_{B}'$$
(11)

当荷载不仅以中墩轴线对称分布,而且各跨拱所受荷载又以各拱对称线而对称分布时, $H_{A}^{'} = H_{B}^{'} = H_{C}^{'}$,则(10)式可简化为:

$$H_A = H_B = H_C = H_D = 1/(1+K)H'_A$$
 (12)

当墩台与顶拱联合作用下的拱脚推力 H^A, H^B, H^c, H^D按(10)或(11)或(12)式求出 后,问题即为静定的了。可用静力平静条件分别求拱和墩台中各断面的内力。

2 考虑弹性压缩时两铰圆弧拱的形常数 W和载常数 Δ_P 计算

如前所述,工程实践中的双联 多联及单孔两铰拱涵应用非常广泛,且多为圆弧形,其 上部荷载复杂多变,加之拱圈的弹性变形对整体结构的内力影响很大。为此,作者根据结 构力学¹²理论推求出了考虑拱圈弹性压缩时拱的形常数及载常数,以便应用本文方法分 析结构系统的协同效应,如附表。 附表 考虑弹性压缩时两铰拱的形常数 ₩和载常数 Δ_D

序号	荷简	载 图	^W 或 △ _P 的 计算公式	系数 n 与 m 的计算公式
0 X	r = 1		$W=mR^{3}/EHnR/EF$	$m = T(1 + 2\cos^2 T) - \frac{3}{2}\sin^2 T; n = T_{+} - \frac{1}{2}\sin^2 T$
1		HI4	$\Delta_{D_1} = m_1 R^4 / EI + n_1 R^2 / EF$	$m_{1} = T(\frac{1}{2}\cos T - \cos^{3}T) + \frac{1}{2}\sin T - \frac{7}{6}\sin^{3}T;$ $m_{1} = \frac{2}{3}\sin^{3}T$
2			$\Delta_{P_2} = (m {}_{2e} R^4) / EI + (n {}_{2e} R^2) / EF$	$m_{2}=2.5_{\sin}nT - \frac{11}{6}\sin^{3}T - T_{\cos}T(1.5 + \cos^{2}T);$ $n_{2}=\sin^{2}T + \frac{1}{2}\sin^{3}T - T_{\cos}T$
3		B	$\Delta_{P_3} = (m_{3p} R^4) / EI + (n_{3p} R^2) / EF$	$m := \{1.5 \sin 2T - T(H - 2\cos^2 T)\} \cos T;$ $n_{3} = \sin T(2 - \cos^2 T) - T\cos T$
4			$ \Delta_{P_4} = (m_4 V_h dR^4) / EI + (n_4 V_h dR^2) / EF $	$ m_{4} = (2^{T_{2}} - 4.5) \sin T_{\cos} T_{4} 5^{T_{\cos}2}T_{-} \frac{1}{2}T_{5}; $ $ n_{4} = \frac{1}{4} \sin 2T_{-} \frac{1}{2}T_{\cos}2T $
5		B	$\begin{array}{lll} \Delta_{P_5} = & (m_5 \mathrm{V} R^5) \ / E I + \\ & (n_5 \mathrm{V} R^3) \ / E F \end{array}$	$\begin{split} m &= (\frac{1}{3} \operatorname{Tsin} \operatorname{Tr} - \frac{7}{6}) \operatorname{sin}^{3} \operatorname{Fr} (\frac{11}{6} \operatorname{Tsin} \operatorname{Fr} - \frac{1}{2}) \operatorname{sin}^{3} \operatorname{Fr} (\frac{1}{2} \operatorname{Tsin} \operatorname{Tr} - \frac{1}{2} \operatorname{Tsin}^{3} \operatorname{Tr} - \frac{1}{$
6		B	$\Delta_{P_6} = (m_{6e_1}R^4) / EI + (n_{6e_1}R^2) / EF$	$\begin{split} m_{6} &= \frac{1}{1 - \cos T} \{ \left(-\frac{41}{72} \cos^{2} F_{4} - \frac{11}{12} \cos F_{4} - \frac{7}{144} \right) \sin 2F_{4} - \frac{2}{3} \sin F_{4} - \left(-\frac{3}{2} \cos^{2} F_{4} - \frac{1}{2} \cos^{2} F_{4} - \cos^{3} F_{4} - \frac{2}{3} \cos^{4} F_{4} - \frac{1}{8} \right) T \}; \\ n_{6} &= \frac{1}{1 - \cos T} \{ \left(-\frac{1}{8} \cos^{2} T_{4} - \frac{1}{6} \cos^{2} T_{4} - \frac{3}{16} \right) \sin 2F_{4} - \frac{4}{3} \sin F_{4} - \left(-\frac{1}{2} \cos^{2} T_{4} - \frac{1}{6} \cos^{2} T_{4} - \frac{3}{16} \right) T \} \end{split}$
7		в	$\begin{array}{lll} \Delta_{P_7} = & (m_7 e^{'} R^4 \;) \; / E I + \\ & (n_7 e^{'} R^2) \; / E F \end{array}$	$\begin{split} m_{7} &= \left(\frac{29}{24} \cos \mathrm{T} - \frac{3}{4}\right) \sin 2 \mathbb{F} + \frac{1}{3} \sin \mathrm{T} + \mathrm{T} \left(\frac{1}{2} - \frac{5}{4} \cos \mathrm{T} + \cos^{2} \mathrm{T} - \frac{3}{2} \cos^{3} \mathrm{T}\right); \\ n_{7} &= \left(\frac{1}{4} - \frac{1}{3} \cos \mathrm{T}\right) \sin 2 \mathbb{F} + \frac{2}{3} \sin \mathrm{T} + \mathrm{T} \left(\frac{1}{2} - \cos \mathrm{T}\right) \end{split}$
8		B	$P_{1} \Delta_{P_{8}} = (m_{8}e'R^{4})/EI + (n_{8}e'_{1}R^{2})/EF$	$\begin{split} m &\approx \frac{1}{1 - \cos T} \{ \frac{1}{2} \sin T + \sin 2T (\frac{43}{288} - \frac{1}{24} \cos T + \frac{1}{144} \cos^2 T) + \frac{1}{6} (1 \\ &- \cos T)^3 (T_{\cos} T - \sin T) - \frac{5}{4} T (\frac{1}{3} \cos T + \frac{1}{4}) \}; \\ n &\approx \frac{1}{1 - \cos T} \{ -\frac{7}{16} T + \sin 2T (-\frac{7}{32} + \frac{1}{6} \cos T - \frac{1}{16} \cos^2 T) + \frac{2}{3} \\ &\sin T \} \end{split}$
9	λ Δ Α	q_1	$\Delta_{P_9} = -2\mathbb{E} tR\sin T$	△ ← 升温取正值,降温取负值,即升温 △ P ₉ 为负值,降温均匀温度, △ P ₉ 为正值。
10		В	$\Delta_{D_{10}} = [(m_{10} q_1 R^4) / (EI)] + [(n_{10} q_1 R^2) / (EF)]$	$m_{10} = m \sin T$; $n_{10} = n \sin T$
11		B	$\Delta_{\rm D_{11}} = \frac{(m_{11}e''R^4) / EI}{(n''e_{11}R^2) / EF}$	$m_{11} = m(1 - \cos T); n_{11} = n(1 - \cos T)$
1 2 ′		B	$\Delta_{P_{12}} = (m_{12}e''_{1}R^{4})/EI$ $+ (n_{12}e''_{1}R^{2})/EF$	$m_{12} = m(1 - \cos T) /2; n_{12} = n(1 - \cos T) /2$

注: *R*为横轴半径; *EF*为抗压刚度; *EI*为抗弯刚度; *mi*,*ni*为无量纲参数; *rn*为拱圈材料容重; *d* 为拱圈厚度; *r*为 拱背填土容重 /1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://w

3 结 语

经现行简化设计方法及本文设计方法对大量工程实例的对比计算(因篇幅所限,各种 计算实例及各种方法的过程从略),可得到如下几点结论:

1)本文所提设计方法,将顶拱墩台作为一整体系统来研究,真实地反映了多联两铰 拱涵的整体协同工作机理,指出了现行设计法的本质缺陷。

2)本文所提方法,考虑顶拱与墩台协同工作的设计思想不仅是对现行设计方法的重 大革新,而且还可应用到各种荷载情况下的多联拱涵设计,特别是对多联两铰拱效益更加 显著,使设计成果更加科学合理。

3)经过大量工程实例的对比计算表明,现行设计法的结果使拱顶推力偏大,拱顶弯矩 偏小,从而使拱顶设计偏于危险;同样使墩台推力偏大,使其体积胖大而不经流 这些现象 已被不少工程实践所证实。

参考文献

1 魏琏著.地下结构初砌计算.北京:铁道出版社,1988

2 武汉水利电力学院建筑力学教研组编.结构力学.北京:人民教育出版社,1980

3 天津大学水利系编.水工建筑物(下册).北京:水利电力出版社: 1986

The Hypogene Calculation of Combined Action of Double Hole Two-Hinged Arch Culvert Pier and Top-Arch

Feng Jiatao Yang Jianguo

(College of Water Conservancy and Architectural Engineering, Northwestern A gricultural University, Yang ling, Shaanx i, 712100)

Abstract Regarding the double hole two hinged arch culvert pier and top arch as a massive structure, considering the synergetic effect and elastic formation of pier and toparch and based on Winker's Hypothesis, the paper puts forward the hypogene calculation of double hole two-hinged arch culvert's massive structure according to the principle of force method. The example and calculation show that the method in this paper not only reveals the arch fracfure mechanism but also a indicates reasonable design of arch crown and a smaller volume of pier.

Key words double hole two-hinged arch culvert; pier; top arch; synergetic effect; the analysis of inner force