第25卷 第5期

1997年10月

Acta Univ. Agric. Boreali-occidentalis

蒜瓣伤害刺激对大蒜休眠生理的影响

张思让 程智慧

描 要 对"改良蒜"和"苍山蒜"蒜瓣进行不同方位和程度的刀伤刺激,然后定期测定其 芽瓣比和牛理指标。结果表明、背部伤害和腹部伤害都加快了芽瓣比的增加进程,同期测定量 大值是对照的 1.5 倍,效果是腹伤大于背伤;POD 活性由于伤害而在前期出现一个峰值,最 高是对照的 2.7倍,不同方位的影响差异不明显,程度上是重伤大于轻伤;IAA 氧化酶活性 在测定过程中不断下降,处理的下降速度大于对照,方位和程度的影响不规律;蒜瓣内还原糖 和单宁含量及 POD 活性有相似的变化趋势,峰值分别为对照的 3.4 倍和 3 倍;两品种表现基 本相同。

关键词 蒜瓣,伤害刺激,休眠生理 中国分类号 S633.4,S604.1 5 330.33

大蒜休眠期的长短主要受遗传及环境因子的调节控制,环境因子包括光、温、湿、气、 伤害及病菌等,这些环境因子刺激都可能引起内部生理生化过程变化,进而影响遗传基因 的表达。程智慧等[1]试验表明,低温高湿或冷凉处理能提前解除鳞茎的休眠,并对处理后 大蒜鳞茎内部的一些生理生化过程进行过研究。但其它环境因子对大蒜鳞茎休眠的影响 未见报道,本研究旨在探讨不同的刀伤刺激对大蒜形态及生理的影响。

材料和方法 1

供试品种为"改良蒜"和"苍山蒜"。设两个伤害处理,背部刀伤和腹部刀伤。每处理设 两个水平,轻伤(深度不到芽孔)和重伤(伤过芽孔)。伤害后播于沙盘中,置20℃±2℃、空 气相对湿度为94%±2%的环境条件下,定期统计芽瓣比和测定有关生理指标。还原糖含 量用水杨酸比色法测定;单宁含量用磷钼酸钨酸钠比色法测定;POD 活性用愈伤木酚法 测定;IAA 氧化酶用定量比色法测定。

结果与分析

1

2.1 对大蒜芽瓣比的影响

休眠期相对较短的改良蒜在受到伤害刺激后,芽瓣比的增加进程快于对照(表1)。在 同期测定中,腹部重伤效果最好,7月21日和30日测定,都比对照高1.5倍以上。苍山蒜 在受到伤害刺激后,7月29日之前基本和对照持平,8月8日测定,各处理的芽瓣比都略 低于对照;在8月15日后,除背部重伤外,其它处理很快增加超过了对照。说明伤害刺激 加快了苍山蒜芽瓣比的增加进程。

收稿日期 1997-03-06

作者简介 张恩让.男,1960年生,实验师.硕士

表 1 伤害刺激对休眠大蒜鳞茎芽瓣比的影响

伤害 部位	伤害	改良蒜(月/日)								苍山藤(月/日)					
	程度	6/9	6/20	6/27	7/4	7/13	7/21	7/30	7/20	7/29	8/8	8/]5	8/23		
36.00	轻伤	0. 228	0.247	0. 252	0. 259	0. 268	0.301	0. 302	0. 235	0. 279	0.374	0.518	0.640		
背部	重伤	0. 228	0. 247	0.260	0.272	0.350	0.352	0.39]	0. 235	0. 272	0.337	0.453	0. 523		
cate -berr	轻伤	0. 228	0. 234	0. 254	0. 254	0.269	0.,353	0.352	0. 235	0. 298	0.349	0.490	0. 674		
腹部	重伤	0. 228	0, 255	0. 264	0.312	0.400	0. 495	0.561	0, 235	0. 270	0.399	0.515	0. 728		
	对照	0, 228	0. 244	C. 245	0.255	0. 258	0. 294	0. 320	0. 235	0.280	0.411	0.500	0, 583		

2.2 对 POD 和 IAA 氧化酶活性的影响

2.2.1 POD 活性 两品种在伤害刺激后,POD 活性急剧升高,出现一个峰值。不论是背部还是腹部,重伤刺激的效果大于轻伤,苍山蒜腹部重伤后的第2次测定(7月29日),POD 活性为对照的2.7倍。此后POD 活性降低,随时间的延长而缓慢升高(表2)。

表 2 伤害刺激对休眠大蒜鲭茎内 POD 活性的影响 $\Delta A \cdot g^{-1} \cdot min^{-1}$

伤害	伤害	改良蒜(月/日)						苍山蒜(月/日)					
部位	伤害 程度	6/9	7/4	7/13	7/21	7/30	7/20	7/29	8/8	8/15	8/23		
背部	轻伤	0.023	0. 345	0.077	0.733	0.725	0.175	0.747	0.480	0.420	0.460		
育郡	重伤	0. 023	0.520	0. 117	0. 542	0.741	0. 175	1.520	0.810	0.763	0.460		
Dec 100	轻伤	0.023	0.267	0. 133	0.538	0.464	0.175	1.083	0.357	0.437	0. 233		
腹部	重伤	0. 023	0. 239	0. 207	0.762	0.621	0.175	1.673	0.487	0.590	0.597		
	对照	0.023	0.223	0.010	0. 228	0.323	0.175	0.630	0.277	0.367	0.163		

2.2.2 IAA 氧化酶活性 IAA 氧化酶活性在试验过程中一直呈下降趋势,不同方位的伤害刺激均加速了这一过程,两品种趋势相同。以伤害程度做比较可见,重伤刺激促进 IAA 氧化酶活性下降的效果大于轻伤(表 3)。

表 3 伤害刺激对休眠大蒜鳞茎内 IAA 氧化酶活性的影响 $\mu g \cdot h^{-1} \cdot mL^{-1}$

									-			
伤害 方位	伤害 程度	客 改良蒜(月/日)					苍山蒜(月/日)					
		7/30	8/6	8/12	8/18	7/20	7/29	8/8	8/15	8/23		
크는 숙매	轻伤	3, 23	2. 76	1.11	0, 74	2. 32	ŭ. 9 9	0.93	0.84	0.33		
化作	重伤	2. 97	1.38	0.73	_	2.32	0. 80	0.74	0.86	0.33		
क्षत्र रोगा	轻伤	3.05	2. 34	0.88	0. 65	2.32	1.14	0.91	0.42	0. 32		
海	重伤	1.93	1.50	0.59	0. 29	2.32	1.04	0.78	0.59	0.40		
	对照	3.49	3. 17	1. 44	0.54	2. 32	1.24	0. 96	0.87	0. 42		

2.3 对还原糖及单宁含量的影响

2.3.1 还原糖含量 伤害刺激使大蒜蒜瓣内还原糖含量有不同程度的增加,其中苍山蒜增幅较大,不同方位相比,腹部刺激后的还原糖最高含量是对照的 2.8 倍(改良蒜 8 月 18 日测定结果),背部刺激的最高比值是 3.4 倍(改良蒜 8 月 12 日测定结果)。从伤害程度来看,两品种还原糖最高含量都出现在重伤刺激后(表 4)。

	表 4 伤害刺激对休眠大蒜鳞茎内还原精含量的影响											
伤害	布宝		改良蒜	(月/日)			1	山蒜(月/日	3)			
伤害 都位	伤害 程度	7/25	8/6	8/12	8/18	7/20	7/29	8/8	8/15	8/23		
	轻伤	0. 677	0.599	0. 262	0.410	0. 605	0.436	0. 290	0. 280	0, 445		
音都	重伤	0, 677	0.879	0. 835	_	0.605	0.348	0. 701	0.820	0. 728		
ne	轻伤	0.677	0. 567	0. 306	0.484	0.605	0.466	0. 184	0.347	0. 253		
腹部	重伤	0.677	1.322	0. 621	0.927	0.605	0.920	0. 383	0. 292	0.897		
	对照	0.677	0.568	0. 248	0.344	0. 605	0.338	0, 171	0. 196	0. 431		

注:糖含量以占大蒜鲜重的百分数表示(下表同)。

2.3.2 单宁含量 伤害刺激后蒜瓣单宁含量均高于对照(表 5)。以效果而论,两品种不 同部位伤害刺激使单宁含量有高有低,没有相同的趋势,从伤害程度上比较,重伤刺激的 效果大于轻伤刺激。

表 5 伤害刺激对休眠大蒜鳞茎内单宁含量的影响

%

伤害	- 作客		改良蒜	(月/日)		苍山蒜(月/日)					
伤害 部位	·伤害 程度	7/30	8/6	8/12	8/18	- 7/20	7/29	8/8	8/15	8/23	
-01-20	轻伤	0. 06	0, 44	0, 74	0, 60	0.10	0. 76	1.40	1.34	0, 58	
背部	重伤	0, 06	1. 16	1. 18	_	0.10	1. 26	1.22	1.48	0. 98	
pår-hve	轻伤	0.06	0.460	0. 88	0. 62	0.10	1. 16	1.00	1.32	0. 64	
腹部	重伤	0.06	0.82	1, 26	1.00	0, 10	1. 20	1. 20	1.34	0.68	
	对照	0.06	0.38	0.70	0. 72	0.10	0.70	1.16	1. 22	0. 60	

3 讨论

在洋葱鳞茎的研究中, Miedema P, Lunis W E 和 Kil sun Y 等[2~4]人都曾利用机械伤 害或部分切除提早解除了休眠。本实验证明这一方法同样适用于大蒜鳞茎,衡量休眠解除 的芽瓣比在伤害刺激后的测定结果说明了这一点。

POD 活性和组织衰老密切相关,伤害刺激加速了组织的衰老,表现在 POD 上是活性 升高,衰老过程中的一些生理生化过程可能引起了休眠的解除。

程智慧等[5]试验证明,较高水平的 IAA 代表了蒜瓣休眠的解除。本研究表明,促进 1AA 降解的 1AA 氧化酶活性在解除休眠过程中迅速下降,据此可知,蒜瓣内 1AA 水平在 休眠解除时升高。

单宁含量和伤害的关系在其它材料上有很多研究报道,但与休眠的关系未见报道,蒜 瓣受到伤害刺激后,单宁含量上升,此过程是否与休眠解除有关,尚需进一步研究。

参考文献

- 1 程智慧。陆幅一. 蒜种冷凉处理对大蒜生理及二次生长的影响. 西北农业学报。1992.1(3):53~59
- 2 Miedema P. Bulb dormanly in onion II. The influence of the rest system-cytokinin and wounding on sprout emergence, Journal of Horticulture Science, 1994,69(1):47~52
- 3 Lunis W E. Evans M M. Experiments in breaking the rest period of corms and bulbs. Proc Amer Soc Hort Sci. 1928.25,73~79
- 4 Kil sun Y. Leonard M P. Elfect of cross-cutting and temperature on short and rest growth of onton bulb. Hort Sci-

ence,1995,30(1):144

5 程智慧, 陆幅一, 刘宏伟. 鳞茎分化乙烯利对苍山蒜二次生长及生理的影响, 西北农业大学学报,1994,22(2):33~37

Effect of Clove's Wound Stimulus on the Dormancy Physiology of Garlic

Zhang Enrang Cheng Zhihui

(Department of Horticulture, Northwestern Agricultural University, Yangling, Shaanxi 712100)

Abstract The ratio of bud/clove and physiological index of garlic bulbs from CVS. Gailing and Cangshan to the wound stimulus at different positions and degrees were studied. The results showed: The wound on clove's back and abdominal parts quickened the increase trend of the ratio of bud/clove; The peak's maximum value determined at the same time was 1.5 times as that of the control; The effect of abdominal wound was greater than that of back wound; POD activities had a peak in early stage because of the wound with 2.7 times at the greatest as that in the control; The effect of heavy wound was greater than that of light wound; The activity of IAA oxidase dropped gradually during the determination at a faster speed than that in the control; The effect of wound at different positions and degrees was not regular; The contents of tannin and reducing sugar in the cloves had the same change trends as the POD activity with the peak's value of 3.4 times and 3 times as in the control; The two cultivars were the similar.

Key words garlic clove, wound stimulus, dormancy physiology