水分胁迫对棉花叶片生长 和光合的影响¹⁾

荆家海 马书尚

(西北农业大学基础课部)

摘 要

棉花LER对水分胁迫极其敏感。 ψ_* 下降时LER比P。受抑制时间早且更严重。 ψ_* 为-0.8MPa时,生长停止,而Pn仍维持较高水平。 ψ_* 大于-1.6MPa,Pn 随 ψ_* 下降而变化不大; ψ_* 小于-1.6MPa,Pn 显著降低; ψ_* 达-2.5MPa时,Pn为零。Pn和DR之间为显著负相关。 ψ_* 为-1.6MPa以上,DR变化不大; ψ_* 低于-1.8MPa时,Pn随DR增加而显著降低, ψ_* 为-2.5MPa时,因气孔关闭,Pn为零。经受水分胁迫棉株以渗透调节方式适应胁迫条件。P-V曲线表明,在任何RWC下,干旱处理 ψ_* 比灌水处理的更负;干旱处理中片膨压消失点 ψ_* 为-1.90MPa,灌水处理为-1.54MPa。

关键词:水分胁迫;水势;叶片延伸生长速率;渗透调节;净光合速率;棉花

棉花体内水分状况对各种生理过程有重要影响。随着水分胁迫的加剧,叶片水势逐渐降低,首先表现出叶片生长减慢,直至停止,然后才是光合速率的降低^[4]。生长快慢主要决定细胞膨压大小^[6],而光合速率既决定于气孔因素,又决定于非气孔因素,又决定于非气孔因素^[7]。本文目素^[7],而蒸腾速率则依赖于叶片水分状况、扩散阻力和大气蒸发要求^[7]。本文目的在于以棉花为材料,研究水分胁迫及胁迫后复水叶片水势变化、叶水势与叶片生长、光合、蒸腾关系,水分胁迫条件下体内渗透调节能力。

1 材料和方法

1.1 材料处理

材料培养:将棉花品种辽棉七号($Gossypium\ hirsutum\ L.$,Liao mian No.7)种于装有表层土壤的塑料盆(高13cm,直径15cm)中,于遮雨玻璃 房中培养。测定前10天放入人工生长箱(光照400 μ E·m $^{-2}$ ·s $^{-1}$,温度29°C,相对湿度60%左右)中培养。每日灌水,保持良好的水分状况。

本文于1987年2月16日收到。

¹⁾ 系国家自然科学基金资助项目的一部分。

处理:灌水处理保持良好水分状况;干旱处理于测定开始停止灌水,使其干旱,并进行各项测定,当 ψ_* 达 -3.5MPa 时复水,继续测定。

1.2 测定方法

叶水势(ψw):用美国土壤水分仪器公司制造的压力室测定。

叶片延伸生长速率(LER):用毫米分度尺,间隔一定时间测出叶长度,计算LER。

净 光合速率 (Pn): 用西德产 BINOS 红外 CO_2 分析仪,以大气 CO_2 作 为 碳源进行测定。

叶片扩散阻力(DR)与蒸腾速率Tr: 用美国产 LI-1600 型稳态气孔计测定。

P一V曲 线绘制:剪取欲测带枝叶片,迅速放入水中,连续剪去枝条、叶柄两次,以 免气泡侵入导管。于水中(外盖上玻璃钟罩)饱和三个小时以上。取出叶片,擦去水分,迅速称重,放入压力室,加压至平衡压,吸掉切口水分。待无水排出,取出叶片 称重,再加压。如此循环,算出RWC(相对含水量),并用 RWC 与其 相 对 应的 ψ_w^{-1} 绘图(如图 5)。

2 实验结果

2.1 水分胁迫和胁迫后复水叶水势的变化

棉花叶片在良好供水条件下, ψ_* 为 -0.30MPa 左 右(图 1)。由于蒸发 蒸 腾 耗水,土壤水分不断减少,随着水分亏缺加剧,叶片 ψ_w 逐渐降低:停止灌水后 12 小时, ψ_w 为 -0.70MPa ;30小时, ψ_w 为 -2.00MPa;60 小时, ψ_w 为 -2.40MPa;96 小时 ψ_w 达 -2.50MPa。此时复水, ψ_w 迅速回 升:复水后7.5 小时, ψ_w 上 升 至 -1.70MPa;21.5 小时, ψ_w 为 -1.15MPa;33.5小时, ψ_w 为 -0.64MPa;60 小时 ψ_w 达 -0.56MPa。 复

水后中w回升可分为:从复水至7.5小时为中w 迅速回升阶段;7.5一35.5小时为回升减 慢阶段;35.5小时后为中w恢复非常缓慢阶段。实验结果表明,棉花因水分胁迫伤害, 中w达-3.50MPa,并未死亡;只要有水分再 次供应仍能恢复,如玉米、高梁、豇豆等 作物受干旱后尚未发现中w下降到如此低水 平(荆家海等,待发表)。从图1看出,棉 花水分胁迫及胁迫后复水叶片中w变化为 "V" 型。

2.2 叶水势与叶片生长速率关系

LER 对水分亏缺非常敏感。图 2 表明,棉花LER与 ψ_w 变化密切相关: ψ_w 为 -0.4MPa,LER最高;此后 ψ_w 值降低0.1 MPa,LER从0.5降至0.36毫米•小时 $^{-1}$;

图1 水分胁迫和胁迫后复水棉 花炉w变化

(黑色箭头指示У√»为 -3.5MPa 时复水,空 心箭头示停止灌水,干旱处理开始)

 ψ_w 为 =0.8MPa, 生长停止。土壤干旱引起 ψ_w 降低,迫使生长停止,主要是 由 于 在 水

势迅速降低同时, ψ_s (叶渗透势)不能因渗透调节而相应地降低,以维持一定 ψ_p (压力势或膨压)所造成的。这与许多人研究的细胞延伸生长与 ψ_p 关系密切的结果 [4,8,9] 一致。

当水分胁迫使 ψ_w 达 -3.5MPa 时复水,叶片 ψ_w 迅 速 恢复(图 1 , 2)。 当 ψ_w 恢复到 -1.64MPa,叶片又重新开始生长;然后随 着 ψ_w 上 升,LER 不 断 增 加; ψ_w 为 -0.60MPa 左右,LER 达0.27毫米•小时⁻¹; ψ_w 在 -0.60~1.60MPa 范 围 内,LER 并非直线上升,而是有起有伏,在玉米试验中也发现类似情况^[1]。复水后两 天,LER 还不能恢复到正常状态,这可能与植物受到干旱伤害有关。

图2 水分胁迫条件下 ψ_w 与 LER, Pn, DR关系

(注:1-LER, 2-Pn, 叶片净光合速率;3-叶片扩散阻力;黑色箭头表示复水)

2.3 叶水势与光合速率关系

从 P n 和扩散阻力关系(图 2,曲线 2, 3)看, P n 和扩散阻力有显著负相关,相关 系数 为 -0.95。 P n 变化受气孔因素和非气孔因素影响 [7,10]。 ϕ_w 在 -1.6 M P a 以上,扩散阻力(主要是气孔阻力)变化不大,而 P n 逐渐降低(图 2),说明非气孔因 素对 P n 的影响早于气孔因素影响。 ϕ_w 在 -1.6 0 M P a 以下,扩散阻力急剧增加, P n 迅速降低, ϕ_w 达 -2.5 0 M P a, P n 为零。说明此时气孔已经关闭,限制 CO $_2$ 吸收,成为 P n 降低的主要限制因子。

2.4 叶水势与扩散阻力、蒸腾速率关系

图 3 表明,在 ψ_w 较高(-0.40-1.60MPa)条件下,扩散阻力较小,且变化不大,蒸腾速率保持在较高水平。 ψ_w 在-1.60MPa以下,扩散阻力急剧增加,蒸腾速率急剧

图3 水分胁迫下,ψ**ッ与**DR, Tr的 **关系** (虚线示Tr—蒸腾速率, 实线示DR—扩散阻力)

降低。 ψ_{W} 为 -2.00MPa-2.80MPa,蒸腾速率一直保持在最低水平,扩散阻力很大,说明气孔已经关闭。这与图 2中 Pn与扩散阻力变化一致。

当 ψ_w 为 -3.50MPa 时复水, ψ_w 逐渐恢复,扩散阻力不断下降,蒸腾速 率 逐 渐 增加。 ψ_w 为-0.60MPa时,扩散阻力已接近最低水平,而蒸腾速率只能恢复到复水前最 高水平的35%左右。棉株经受水分胁迫锻炼后重新获得水分,蒸腾降低是对于旱一种适应,

图4 不同水分处理叶片RWC和中w关系 (虚线示准水处理, 实线示于早处理)

这是组织保水力增加还是其他原因,还需进 一步研究。

2.5 水分胁迫引起棉花叶片 渗透调节

分别测定灌水和干旱处理叶片ψπ和相对应的 RWC, 绘图。从图 4 明显看出,任何一种 RWC, 干旱处理叶片ψπ均比灌水处理叶片低。如在 RWC 90%时,灌水处理ψπ为 -1.25MPa,干旱处理 为 -1.70MPa,二者相差 0.45MPa。随着 RWC下降,二者差值增大。如RWC为75%时,灌水处理ψπ为 -1.90MPa,干旱处理ψπ为-2.45 MPa,相差0.55MPa。干旱处理ψπ为-2.45 MPa,相差0.55MPa。干旱处理σψπ为-2.45 MPa,相差0.55MPa。干旱处理σψπ为-2.45 MPa,相

3 讨论

3.1 细胞延伸生长对水分胁迫反应最敏感

水分胁迫对植物各个生理过程均有影响,但细胞延伸生长对水分胁迫反应最敏感。 Hsiao [5] 等曾总结各种生理生化过程对水分胁迫的敏感程度,提 出 ψ_w 降 低 到 -0.20 — -0.40MPa,其他生理过程未受到明显影响,而延 伸生长受到抑 制。Acevedo 等 [2]

发现玉米中 $_v$ 为-0.28MPa,LER最大, $_v$ w降至-0.70MPa,生长停止。荆家每等[1]发现,盆栽玉米在快速干旱条件下,LER从最大到零仅需5小时,中 $_v$ 改变0.5~0.6MPa。由本试验中看出,棉花LER与叶中x密切相关:中 $_v$ 为 -0.40MPa,LER为0.5毫米·小时一,随着中 $_v$ 下降,LER迅速降低;当 $_v$ 为-0.80MPa时,生长停止。LER随中 $_v$ 变化实质是组成水势组份的膨压变化所引起的。按照 $_v$ 0.80MPa时,生长停止。LER随中 $_v$ 0.2公式[5],假如水分胁迫过程中细胞扩张性能(Eg)和细胞生长临界膨压(中 $_v$ 0.1 $_v$ 0.1)交化不大,那么LER(即 $_v$ 0.0寸。1)与细胞膨压(中 $_v$ 0.0变化密切相关。在渗透调节能力还未充分发挥作用时,水分胁迫引起叶水势降低,随之使膨压迅速下降,以致生长停止。因此棉花叶片生长与玉米等作物相同,对水分胁迫是非常敏感的。本试验在生长停止。因此棉花叶片生长随着中x升高逐渐恢复,但当 $_v$ 0.50MPa左右,LER只为复水前最大生长速率的35%。这可能与叶片在几天水分胁迫过程中Eg或中 $_v$ 0.11改变有关[6]。

Boyer [41] 研究玉米、大豆、向日葵发现,这些作物 生 长 对 水 分 胁 迫 最 敏感,当生长停止后光合作用才开始显著降低。我们发现棉花 ψ_w 为 -0.80MPa时,叶 片 生 长 停 止,而 Pn降低并不明显,只在 ψ_w 为 -1.80MPa 时 Pn才显著降低,直到 ψ_w 为 -2.5MPa, Pn才变为零。同样证明光合作用对水分胁迫反应不如延伸生长敏感。光合 强 弱 决定于水分胁迫所引起气孔和非气孔因子的变化, ψ_w 在 -1.60或 -1.80MPa 以 上, 扩散阻力变化很小,这时非气孔因子先于气孔因子表现出对光合的限制。在 ψ_w -1.80MPa 以下,扩散阻力急剧增加,意味着气孔关闭,CO,供应受阻,致使 Pn为零。

3.2 水分胁迫诱导棉花叶片 渗透调节

渗透调节作为植物对胁迫条件一种适应性反应,是一种重要的生理过程。 水分胁迫条件下,植物体内会积累渗透物质,降低 中s,维持一定膨压,使细胞继续延伸生长,使气 孔 保 持 一 定开张 度,利于光 合作用进 行。

前人^[3] 曾对渗透调节作过综述,Ackerson ^[3] 曾研究过棉花渗透调节。 我们的研究结果表明,水分胁迫能诱导棉花叶片进行渗透调节,如图 4 表明,在相同 RWC条件下,水分胁迫叶片 ψw比良好供水叶片要低。若将图 4 中ψw变为倒数值,与相对应 RWC 绘图,可以清楚看出,在任何一种 RWC下,水分胁迫叶片ψs 比良好灌水叶片 低,充分饱和时叶片渗透势,干旱处理 为 - 1.56

图5 不同水分处理/w⁻¹ 与 RWC 关系

(实线示干旱处理, 虚线示灌水处理)

MPa, 灌水处理为 -1.30MPa, 灌水处理 叶片 膨 压 消失点 ψ_s (= ψ_w)为 -1.54MPa,

干旱处理为 -1.90MPa。由干旱处理叶片膨压消失点 ψ_s ($=\psi_w$)数值可以推测出棉花 叶片延伸生长临界膨压不等于零,叶片气孔关闭水势值(或渗透势值)为 -1.90MPa 左右。这与图 2 , 3 中扩散阻力及光合速率变化基本吻合。关于渗透调节对延伸生长和光合作用影响还需进一步研究。

参考 文献

- [1] 荆家海、肖庆德:水分胁迫和胁迫后复水对玉米叶片生长速率的影响,《植物生理学报》,1987(1):51-57。
- (2) Acevedo E, Hsiao T C, Henderson D W,: Immediate and subsequent growth resposes of maize leaves to changes in water stress. *Plant Physoil*. 1971, 48: 631-636.
- (3) Ackerson RC & Hebert R R.: Osmoregulation in cotton in respnose to water stress. plant physiol. 1981, 67: 484-488.
- [4] Boyer J S,. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol. 1970, 46: 233—235.
- (5) Hsiao T C, Acevedo E, Fereres E et al. Water stress, growth, and osmotic adjustment, Phil. Trans. R Soc London Ser B 1976, 27:497—500.
- (6) Hsiao T C, Silk W K, Jing J: Leaf growth and water deficits: Biophysical effects. In: Barker N R, Davies W J, Ong CK(eds) control of Leaf Growth. Seb Seminar 27. Cambridge University Press, 1985: 239—266.
- [7] Jordan W R. Cotton. In. Teare I D et al (eds), Crop-Water Relations. John Wiley & Sons. 1983: 225-232.
- (8) Marani A, Baker D N, Reddy V R et al.: Effect of water stress on canopy senescence and carbon exchange rates in cotton. Crop Science 1985, 25: 798-802.
- (9) Morgan J M. Osmoregulation and water stress in higher Plants. Ann. Rev. Plant Physiol. 1984, 35: 299-319.
- (10) Pearcy R W. Physiological consequences of cellular water deficits. Non-stomamal inhibition of photosynthesis by water stress. In: Taylor H M et al. (eds), Limitations to efficient Water use in crop production, ASA-CSSA-SSSA.1983: 277—286.

15卷

EFFECTS OF WATER STRESS ON GROWTH AND PHOTOSYNTHESIS OF COTTON LEAVES

Jing Jiahai

Ma Shushang

(Northwestern Agricultural University)

Abstract

Results obtained from the experiment showed that leaf elongation rate (LER) was extremely sensistive to water stress. As ψ_w decreased, LER was inhibited earlier and more severely than Pn. When ψ_* dropped to above -0.8MPa, leaf growth stopped while Pn still remained the maximal level. As stress was imposed, Pn was observed to be at first relatively a little change with ψ_* ($\psi_* > -1.6$ MPa), but then ($\psi_* < -1.6$ MPa) to decrease markedly, reaching zero at greater stress levels ($\psi_* = -2.5$ MPa). Under water stress, there was the strong negative correlation between pn and DR to water vapor loss. DR was little changed under above -1.6MPa which decreased Pn. When ψ_* was below -1.8MPa, Pn decreased markedly, when ψ_* got to -2.5 MPa, Pn stopped for stomatal closure.

Cotton plants subjected to water stress exhibited stress adaptation in the form of osmoregulation. There was more negative ψ_* . The results obtained from P—V curves showed that ψ_* of drying plants was more negative than that of control irrigated plants. ψ_* in the point of lossing turgor was -1.90MPa and -1.54MPa for drying and control irrigated plants, espectively.

Key Words: water stress; water potential; leaf elongation rate; osmoregulation; net photosynthesis rate; cotton