水分胁迫对棉花叶片生长

和光合的影响

荆家海 马书尚

(西北农业大学基础课部)

摘 要

棉花LER对水分胁迫极其敏感。 ψ_* 下降时LER比P。受抑制时间早且更严重。 ψ_* 为-0.8MPa时,生长停止,而Pn仍维持较高水平。 ψ_* 大于-1.6MPa, Pn 随 ψ_* 下降而变化不大; ψ_* 小于-1.6MPa, Pn 显著降低; ψ_* 达-2.5MPa 时,Pn为零。Pn和DR之间为显著负相关。 ψ_* 为-1.6MPa以上,DR 变化 不大; ψ_* 低于-1.8MPa时,Pn随DR增加而显著降低, ψ_* 为-2.5MPa时,因气 孔关闭,Pn为零。经受水分胁迫棉株以渗透调节方式适应胁迫条件。P-V曲 线表明,在任何RWC下,干旱处理 ψ_* 比灌水处理的更负;干旱处理叶片膨压消 失点 ψ_* 为-1.90MPa,灌水处理为-1.54MPa。

关键词:水分胁迫;水势;叶片延伸生长速率;渗透调节;净光合速率;

棉花

棉花体内水分状况对各种生理过程有重要影响。随着水分胁迫的加剧,叶片水势逐渐降低,首先表现出叶片生长减慢,直至停止,然后才是光合速率的降低^[4]。生长快慢主要决定细胞膨压大小^[6],而光合速率既决定于气孔因素,又决定于非气孔因素^[7]。本文目素^[7],而蒸腾速率则依赖于叶片水分状况、扩散阻力和大气蒸发要求^[7]。本文目的在于以棉花为材料,研究水分胁迫及胁迫后复水叶片水势变化、叶水势与叶片生长、光合、蒸腾关系,水分胁迫条件下体内渗透调节能力。

1 材料和方法

1.1 材料处理

材料培养:将棉花品种辽棉七号(Gossypium hirsutum L, Liao mian No.7)种 于装有表层土壤的塑料盆(高13cm,直径15cm)中,于遮雨玻璃房中培养。测定前 10天放入人工生长箱(光照400μE·m⁻²·s⁻¹,温度29℃,相对湿度60%左右)中培养。 每日灌水,保持良好的水分状况。

本文于1987年2月16日收到。

¹⁾系国家自然科学基金资助项目的一部分。

处理: 灌水处理保持良好水分状况; 干旱处理于测定开始停止灌水, 使其干旱, 并进行各项测定, 当步,达一3.5MPa 时复水, 继续测定。

1.2 测定方法

叶水势(ψw):用美国土壤水分仪器公司制造的压力室测定。

叶片延伸生长速率(LER):用毫米分度尺,间隔一定时间测出叶长度,计算LER。

净 光合速率(Pn):用西德产 BINOS 红外 CO₂分析仪,以大气 CO₂作为 碳 源进行测定。

叶片扩散阻力(DR)与蒸腾速率Tr:用美国产 LI-1600 型稳态气孔计测定。

P-**∨**曲 线绘制:剪取欲测带枝叶片,迅速放入水中,连续剪去枝条、叶柄两次, 以 免气泡侵入导管。于水中(外盖上玻璃钟罩)饱和三个小时以上。取出叶片,擦去水 分,迅速称重,放入压力室,加压至平衡压,吸掉切口水分。待无水排出,取出叶片 称 重,再加压。如此循环,算出RWC(相对含水量),并用 RWC 与其 相 对 应的ψw⁻¹ 绘图(如图5)。

2 实验结果

2.1 水分胁迫和胁迫后复水叶水势的变化

棉花叶片在良好供水条件下, ψ_* 为 -0.30MPa 左 右(图1)。由于蒸发 蒸 腾 耗 水,土壤水分不断减少,随着水分亏缺加剧,叶片 ψ_w 逐渐降低:停止灌水后 12小时, ψ_w 为 -0.70MPa;30小时, ψ_w 为-2.00MPa;60小时, ψ_w 为 -2.40MPa;96小时 ψ_w 达 - $\epsilon_{.50MPa}$ 。此时复水, ψ_w 迅速回升:复水后7.5小时, ψ_w 上升至 -1.70MPa;21.5 小时, ψ_w 为 -1.15MPa;33.5小时, ψ_w 为 -0.64MPa;60小时 ψ_w 达 -0.56MPa。复

水后ψw回升可分为:从复水至7.5小时为ψw 迅速回升阶段;7.5—35.5小时为回升减 慢阶段;35.5小时后为ψw恢复非常缓慢阶 段。实验结果表明,棉花因水分胁迫伤害, ψw达 -3.50MPa,并未死亡;只要有水分再 次供应仍能恢复,如玉米、高粱、豇豆等 作物受干旱后尚未发现ψw下降到如此低水 平(荆家海等,待发表)。从图1看出,棉 花水分胁迫及胁迫后复水叶片ψw变化为 "V"型。

2.2 叶水势与叶片生长速率关系

LER 对水分亏缺非常敏感。图 2 表 明,棉花LER与 ψ_w 变化密切相关: ψ_w 为 -0.4MPa, LER最高;此后 ψ_w 值降低0.1 MPa, LER从0.5降至0.36毫米·小时⁻¹;

ψw为 =0,8MPa, 生长停止。土壤干旱引起ψw降低, 迫使生长停止, 主要是 由 于 在 水

势迅速降低同时,ψs(叶渗透势)不能因渗透调节而相应地降低,以维持一定ψp(压力 势或膨压)所造成的。这与许多人研究的细胞延伸生长 与ψp关系密切的结果^[4, 8, 9]一 致。

当水分胁迫使如达 -3.5MPa 时复水,叶片如迅速恢复(图1,2)。当如恢 复到 -1.64MPa,叶片又重新开始生长;然后随着如 上升,LER 不断增加;如 为 -0.60MPa 左右,LER 达0.27毫米·小时⁻¹;如 在 -0.60-1.60MPa 范围内,LER 并非直线上升,而是有起有伏,在玉米试验中也发现类似情况^[1]。复水后两天,LER 还不能恢复到正常状态,这可能与植物受到干旱伤害有关。

图2 水分胁迫条件下 ψ_w 与 LER, Pn, DR关系

(注: 1-LER, 2-Pn, 叶片净光合速率; 3-叶片扩散阻力; 黑色箭头表示复水) 3 叶水热与半合速率关系

2.3 叶水势与光合速率关系

叶片 Pn变化除决定于品种、叶龄外,还决定于环境条件^[7]。土壤水分亏缺条件下, 叶片ψw降低,Pn下降。图2表明,在盆栽条件下叶片ψ*和 Pn变化密切相关:ψx在 Ξ1.80MPa以上,Pn随ψx下降缓慢降低;ψx在-1.80MPa以下,Pn急剧下降;-2.50MPa, Pn为零,即光合和呼吸相等;ψx为-2.60MPa, Pn为负值,说明呼吸速率超过光合速率。

从Pn和扩散阻力关系(图2,曲线2,3)看,Pn和扩散阻力有显著负相关,相关系数为-0.95。Pn变化受气孔因素和非气孔因素影响^[7,1,0]。如来在-1.6MPa以上,扩散阻力(主要是气孔阻力)变化不大,而Pn逐渐降低(图2),说明非气孔因素对Pn 的影响早于气孔因素影响。如来在-1.60MPa以下,扩散阻力急剧增加,Pn迅速降低,如达-2.50MPa,Pn为零。说明此时气孔已经关闭,限制CO₂吸收,成为Pn 降低的主要限制因子。

2.4 叶水势与扩散阻力、蒸腾速率关系

图 3 表明,在⁴w较高(-0.40-1.60MPa)条件下,扩散阻力较小,且变化不大, 蒸腾速率保持在较高水平。 4w在 -1.60MPa以下,扩散阻力急剧增加,蒸腾速 率 急 剧

图3 水分胁迫下, ψ_w与DR, Tr的关系
(虚线示Tr-素酶速率, 实线示DR-扩散阻力)

降低。ψw为 -2.00MPa-2.80MPa,蒸腾速率一直保持在最低水平,扩散阻力很大, 说明气孔已经关闭。这与图2中Pn与扩散阻力变化一致。

当ψw为 -3.50MPa 时复水,ψw逐渐恢复,扩散阻力不断下降,蒸腾速 率 逐 渐 增加。ψw为-0.60MPa时,扩散阻力已接近最低水平,而蒸腾速率只能恢复到复水前最 高水 平的35%左右。棉株经受水分胁迫锻炼后重新获得水分,蒸腾降低是对干旱一种适应,

这是组织保水力增加还是其他原因,还需进 一步研究。

2.5 水分胁迫引起棉花叶片 渗透调 节

分别测定灌水和干旱处理叶片ψ*和相对 应的 RWC, 绘图。从图 4 明显看出, 任 何 一种 RWC, 干旱处理叶片ψ*均比灌水处理 叶片 低。如在 RWC 90%时,灌水处理ψ* 为 -1.25MPa, 干旱处理 为 -1.70MPa, 二 者 相 差 0.45MPa。随 着 RWC 下降, 二者 差值增大。如RWC为75%时,灌水处理ψ* 为 -1.90MPa,干旱处理ψ*,为-2.45 MPa, 相 差0.55MPa。干旱处理齿受水分胁迫诱导, 进行渗透调节,积累渗透物质, 使ψ.降低。

3 讨 论

3.1 细胞延伸生长对水分胁迫反应最敏感

水分胁迫对植物各个生理过程均有影响,但细胞延伸生长对水分胁迫反应最敏感。 Hsiao^[3]等曾总结各种生理生化过程对水分胁迫的敏感程度,提出 ψ_w 降 低 到 −0.20 →-0.40MPa,其他生理过程未受到明显影响,而延 伸生长受到抑 制。Acevedo 等^[2] 发现玉米如*为-0.28MPa, LER最大,如降至-0.70MPa,生长停止。荆家每等^[1]发现,盆 栽玉米在快速干旱条件下,LER从最大到零 仅需 5 小时,如* 改变 0.5~0.6MPa。由 本 试验中看出,棉花LER与叶如密切相关:如*为 -0.40MPa, LER为0.5毫米·小 时⁻¹;随着如*下降,LER迅速降低;当小*为-0.80MPa时,生长停止。LER随如变 化实质是组成水势组份的膨压变化所引起的。按照 dv/v·dt=E_g(ψ_p - $\psi_{p.th}$)公 式^[5],假如水分胁迫过程中细胞扩张性能(Eg)和细胞生长临界膨压($\psi_{p.th}$)变 化不大,那么LER(即dv/v·dt)与细胞膨压(ψ_p)变化密切相关。在渗透调节能 力还未充分发挥作用时,水分胁迫引起叶水势降低,随之使膨压迅速下降,以致生长 停止。因此棉花叶片生长短着如升高逐渐恢复,但当如回升到 -0.50MPa 左右, LER 只为复水前最大生长速率的35%。这可能与叶片在几天水分 胁 迫 过程中Eg式 $\psi_{P.th}$ 改变有关^[6]。

Boyer^[4]研究玉米、大豆、向日葵发现,这些作物 生 长 对 水 分 胁 迫 最 敏感, 当生长停止后光合作用才开始显著降低。我们发现棉花如为 -0.80MPa时,叶片 生 长 停 止,而 Pn降低并不明显,只在如为 -1.80MPa 时 Pn才显著降低,直到如为 -2.5 MPa, Pn才变为零。同样证明光合作用对水分胁迫反应不如延伸生长敏感。光合 强 弱 决定于水分胁迫所引起气孔和非气孔因子的变化,如在 -1.60或 -1.80MPa 以上,扩 散阻力变化很小,这时非气孔因子先于气孔因子表现出对光合的限制。在 如 -1.80MPa 以下,扩散阻力急剧增加,意味着气孔关闭, CO₂ 供应受阻,致使 Pn为零。

3.2 水分胁迫诱导棉花叶片 渗透调节

渗 透调节作为植物对胁迫条件一种 适应性反应,是一种重要的生理过程。 水分胁迫条件下,植物体内会积累渗透 物质,降低 ds,维持一定膨压,使细 胞继续延伸生长,使气孔保持一定 开张度,利于光合作用进行。

前人^[3,9]曾对渗透调节作过综述, Ackerson^[3]曾研究过棉花渗透调节。 我们的研究结果表明,水分胁迫能诱导 棉花叶片进行渗透调节,如图4表明, 在相同 RWC条件下,水分胁迫叶片如t 良好供水叶片要低。若将图4中如变为 倒数值,与相对应 RWC 绘图,可以清 楚看出,在任何一种 RWC下,水分胁 迫叶片如s 比良好灌水叶片低;充分 饱 和时叶片渗透势,干旱处理 为 ~ 1.56

(实线示于旱处理, 虚线示灌水处理)

MPa, 灌水处理为 –1.30MPa; 灌水处理 叶片 膨 压 消失点 ψ_s (= ψ_r)为 –1.54MPa,

参考文献

- 【1〕荆家海、肖庆德:水分胁迫和胁迫后复水对玉米叶片生长速率的影响,《植物生理学报》,1987(1):51-57。
- (2) Acevedo E, Hsiao T C, Henderson D W, Immediate and subsequent growth resposes of maize leaves to changes in water stress. *Plant Physoil*. 1971, 48: 631-636.
- (3) Ackerson R C & Hebert R R.: Osmoregulation in cotton in respnose to water stress.plant physiol.1981, 67: 484-488.
- [4] Boyer J S., Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. *Plant Physiol*. 1970, 46: 233-235.
- (5) Hsiao T C, Acevedo E, Fereres E et al. Water stress, growth, and osmotic adjustment, Phil. Trans. R Soc London Ser B 1976, 27:497-500.
- (6) Hsiao T C, Silk W K, Jing J: Leaf growth and water deficits: Biophysical effects. In: Barker N R, Davies W J, Ong CK(eds) control of Leaf Growth. Seb Seminar 27. Cambridge University Press, 1985: 239-266.
- [7] Jordan W R: Cotton. In: Teare I D et al(eds), Crop-Water Relations. John Wiley & Sons. 1983: 225-232.
- (8) Marani A, Baker D N, Reddy V R et al.:Effect of water stress on canopy senescence and carbon exchange rates in cotton. Crop Science 1985, 25: 798-802.
- (9) Morgan J M: Osmoregulation and water stress in higher Plants. Ann. Rev. Plant Physiol. 1984, 35: 299-319.
- Pearcy R W: Physiological consequences of cellular water deficits. Non-stomamal inhibition of photosynthesis by water stress. In: Taylor H M et al. (eds), Limitations to efficient Water use in crop production, ASA-CSSA-SSSA.1983: 277-286.

EFFECTS OF WATER STRESS ON GROWTH AND PHOTOSYNTHESIS OF COTTON LEAVES

Jing Jiahai Ma Shushang

(Northwestern Agricultural University)

Abstract

Results obtained from the experiment showed that leaf elongation rate(LER) was extremely sensistive to water stress. As ψ_w decreased, LER was inhibited earlier and more severely than Pn. When ψ_w dropped to above -0.8MPa, leaf growth stopped while Pn still remained the maximal level. As stress was imposed, Pn was observed to be at first relatively a little change with ψ_w ($\psi_w > -1.6$ MPa), but then ($\psi_w < -1.6$ MPa)to decrease markedly, reaching zero at greater stress levels ($\psi_w = -2.5$ MPa). Under water stress, there was the strong negative correlation between pn and DR to water vapor loss. DR was little changed under above -1.6MPa which decreased Pn. When ψ_w was below -1.8MPa, Pn decreased mark-edly. when ψ_w got to -2.5 MPa, Pn stopped for stomatal closure.

Cotton plants subjected to water stress exhibited stress adaptation in the form of osmoregulation. There was more negative ψ_{*} . The results obtained from P—V curves showed that Ψ_{*} of drying plants was more negative than that of control irrigated plants. Ψ_{*} in the point of lossing turgor was -1.90MPa and -1.54MPa for drying and control irrigated plants, espectively.

Key Words: water stress; water potential; leaf elongation rate; osmoregulation; net photosynthesis rate: cotton