红霉素在奶山羊体内代谢动力学的研究*

扈文杰 王建元 刘清玉 李富娥 顾天骥

(西北农学院兽医系)

(基础课部)

摘 要

给七只健康成年奶山羊单剂量快速静注红霉素(8mg/kg)后,12小 时内 不同时间 采血,用管碟法测定血 清 红 霉 素 浓 度 ,符 合 无 吸 收 因 素 开 放 式 二 室 模 型 ($\hat{C}=8.68e^{-2.2398t}+1.01e^{-0.2808t}$),算得的动力学参数如下:药物初始浓度 C_{P} °为9.70 μ g/ml,消除半衰期(T_{Φ} 6)为2.78h;分布半衰期(T_{Φ} 0)为0.33h;中→周室转运速率常数(K_{12} 0)为0.7084h⁻¹;局→中室转运速率常数(K_{21} 0)为0.4938h⁻¹;表观分布容积(V_{a} 0)为4.287L/kg;体清除率(Cl_{B} 0)为1.1345 $L\cdot k$ g⁻¹·h⁻¹;药时曲线下面积(AUC0)为8.17 μ g·ml⁻¹·h;有效血药浓度维持时间($T_{CP(\{u,e\})}$ 0)为3.22h。以上结果表明红霉素有效血药浓度维持时间较短。

引言

红霉素属大环内脂类抗菌素,其抗菌谱与青霉素G相似,对革兰氏阳性细菌作用很强,如金葡球菌、耐药金葡球菌、肺炎球菌、链球菌、炭疽杆菌、猪丹毒杆菌、李氏杆菌,腐败梭菌,气肿疽梭菌等均有较强的抗菌作用^[1];对枝原体,立克次氏体和衣原体也有抑制作用^[2]。英国兽药典业已收载^[8],国内也应用于兽医临床。其药代动力学的研究曾在马^[6][6]、牛^[4]、水牛、猪^[7]、狗^[4]、猫^[4]、鸡^[6]上进行过,种属差异较大,但在奶山羊体内的药代动力学研究尚未见报道。为了给临床合理用药提供依据,我们对七只奶山羊进行了药代动力学研究。

材料与方法

供试动物: 七只成年健康莎能奶山羊改良羊(均为母羊、未 泌乳), 平均 体重为 34.29±4.9kg(范围27—42kg), 试验期间常规饲养,试验前进行临床健康检查。

试验药品:供试药物为注射用 乳糖酸红霉素,每支相当于红霉素碱250mg,上海第四制药厂产品,批号810109—1,注射前用注射用水稀释成2.5%的浓度。标准品由卫生部药品生物制品检定所分发,批号7401209。培养基所用药品均 系国 产BR或 AR标

^{*}本刊编辑室收到此稿时间。1984年4月28日。

准。

血药浓度测定: 乳糖酸红霉素钠按8mg/kg的剂量静脉快速推注,于给 药 后12小时内不同时间采血(见表 1),分离血清用一剂量管碟法测定血清红霉素浓度^[0],试验菌种为藤黄八叠球菌(28601),由西安市药检所提供。菌液制备及培养 基接 中国药典(1977)。

动力学参数计算,测得的七只奶山羊的血药浓度数据用线性最小二乘法和残数法逐 只求出一、二室模型,以方差分析来比较各模型血药浓度理论值与实测值的剩余离差平 方来优选模型[11],逐只计算药代动力学参数,并用统计学处理。

结 果

- ,1.测定血药浓度的标准曲线回归直线方程为 $f_{k}=4.4497 \ln c 7.7287$,经统计学检验差异显著(r=0.9972、 $r_{0.01}=0.874$, $r>r_{0.01}$),按此方程测得的红霉素在七只奶山羊体内血清浓度(见表 1),药一时曲线为双指数曲线(见图 1),经F检验表明最符合无吸收开放二室模型。
- 2. 七只奶山羊按无吸收开放二室模型算得药代动力学参数(见表 2), 算得红霉素 在奶山羊体内血药浓度随时间变化的动态规律用下式表达:

$$\hat{C} = 8.68e^{-2.2898} + 1.101e^{-0.2608}$$

按此方程估算血药浓度理论值与实测值接近。经t检验、 X^2 检验和r检验均证明二者 差异无统计学意义(P>0.05),表明二者极相符合(见图 1 、表 1)。

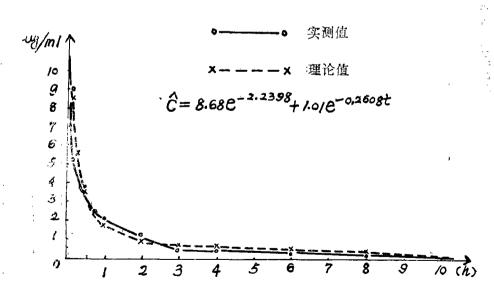


图 1 七只奶山羊单剂量静注乳酸红霉素 (8mg/kg) 后血清药一时曲线 (说明:图中的计算式及数字与"结果"2相同)

七只奶山羊单剂量(8mg/kg)静注乳糖酸红霉素后血清浓度

有米石里河外及《宋代》(宋代)

米面 (小) 1* 2* 時間 (小) 報慮 (小) 理论值 (上) 年間 (上) 2* 0.08 12.4 11.78 5.67 5.56 0.25 6.08 7.57 3.65 3.73 0.75 4.10 3.99 2.13 2.14 0.75 1.54 2.15 1.32 1.31 2 0.78 0.22 0.48 0.32 3 0.31 0.12 0.23 0.21 4 0.17 0.08 0.15 0.15 6 0.05 0.05 0.06 0.07 8 0.03 0.03 0.04 0.04 10 0.02 0.02 0.02 0.02	_					_		_				
文	₀	•	4	,	* 9		* ∞		* 6		均值土	土标准差
12.4 1.4.10 4.10 1.54 1.54 1.54 0.03 0.03 0.05 0.00	理论 实测值值	理论值实测值		理论值	实测值 理论值 实测值			理论值实测值	文测值	理论值	突测值	理论值
6.08 3.08 3.08 3.08 0.03 0.05 0.05 0.00	5.56 7.55	7.14	5.38	4.57	•	•	10.67	10.36	11.58	11.649.04	9.04±2.88	8.51
3.08 3.08 3.08 0.03 0.05 0.00 0.00 0.00	3.73 3.46	4.52	3.04	3,75	5.16	5.29	7.61	8.2	7.70	8.27	8.27 5.24 ± 1.95	.955.90±2
3.08 0.78 0.03 0.05 0.05 0.00	2.14, 2.23	2.53	2.61	2.89	3.42	3,39	6.61	5.9	5.87	5.09	3.85±1.783.	3.70
3.08 0.78 0.03 0.05 0.02	1.31 2.04	1.62	2.26	2,31	2.44	2,37	4.23	4.37	3.07	3.27 2.41	2,41±0,992,49	2,49
0.78 0.03 0.05 0.02 0.02	0.86 1.67	1,19	1.96	1,91	1.78	1.80	3.52	3,2	2.71	2,21	2.17±1.02	.02 1.77
0.03	0.32 0.81	0.69	1.5	1.14	1.63	1.03	2.56	2,33	2.16	0.85	1.42 ± 0.77	0.94
0.05	0.21 0.47	0.51	0.78	0.83	0.23	0.75	9.0	0.95	0.63	0.61	0.46±0.22	0.57
0.02	0.15 0.30	0.38	0.58	0.63	0.19	0.56	0.43	0.72	0.57	0.50	0.34±0.19	0.43
0.03	0.07 0.21	0.21	0.45	0.37	0.11	0.32	0.42	0,45	0.36		0.360.24±0.173.26	3.2
0.02	0.04 0.10	0.12	0.24	0.22	0.07	0.18	0.22	0.29	0.25	1	0.260.14 ± 0.160.16	0.16
	0.02 0.09	0.07	0.11	0.13	0.03	0.10	0.18	0.18	0.19	0.18	0.09±0.070.1	0.1
12 0.01 0.01 0.01 0	0.01 0.03	0.03	0.03	0.08	0.02	0.06	0.16	0.12	0.13		0.130.06±0.050.06	0.0

•采血生温

	1	4	Eu /Eune		计位式格联件电操作的11.例 1. + 岁致 羊号及体重		サントが	ž.	拉伯士萨林芸
动力学参数	本	1号 37 k g9号	9号 34kg 3号		42kg 4号 32kg 6号	3号 31kg 8号	3号 37kg9号	9号 27kg n=7	n=7 34.29 4.9kg
分布相初始浓度(A)	µg/m1	14.27	6.16	29.2	3.25	6.81	9.87	12,75	8.68 ± 3.86
消除相初始浓度(B)	µg/m1	0.25	0.57	1.21	1.8	0.5743	1.72	0.97	1.01±0.6
血药初始浓度 (Crº)	µg/m1	14.52	6.73	88.88	5.05	7.39	11,59	13,72	9.70 ± 3.64
分布速率常数 (α)	h-1	2,66	2,6162	3.0994	1.8220	1,6373	1.6245	2,2190	$2.2190 2.2398 \pm 0.5735$
消除速率常数 (β)	h-1	0.2617	0.3388	0.2913	0.2623	0.2811	0.2238	0.1665	$0.1665 0.2608 \pm 0.0543$
中→周室转运速率常数 (k12)	h-1	0.3474	0.7563	1,3693	0.682	0.3413	0.5745	0.8882	0.8882 0.7084 ± 0.3548
周→中室转运速率常数 (k21)	ħ-1	0.303	0.5317	0.6739	0.8182	0.3866	0.4317		$0.3116 0.4938 \pm 0.1932$
中央室消除速率常数 (k10)	h-1	2,2961	1.6670	1,3475	0.5841	1,1903	0.8421	1,1857	$1.1857 1.2432 \pm 0.6332$
中周室转运速率常数比 (k ₁₂ /k ₂₁)		1,1297	1,4224	2,0319	0.8332	0.8828	1,331	2.8504	$2.8504 1.4974 \pm 0.7192$
分布后相药物在中室分 布率 (fc)		0.1063	0.2032	0.2184	0.4491	0.3362	0.2657	0.1404	$0.1404 0.2313 \pm 0.1107$
药一时曲线下面积 (AUC)	µg·ml-1•h	6.323	4.037	6.6285	8.6462	6.187	13.76	11,5716	$ 11.5716 8.17\pm3.41$
中央室分布容积 (Vc)	m1/ k g	0.551	1188.71	.06*006	1584.16	1081.08	390.25	583.09	939.88 \pm 374.02
周边室分布容积 (Vp)	m1/kg	622,42	1714.58	1830.54	1320.45	954.38	918.59	1662.07	1289.04 ± 467.91
总表观分布容积 (V ₂)	m1/kg	4834.5	5849.08	4143.18	3527.5	4599,91	2597.83	4152.24	4286.97 ± 1048.02
消除相半衰期T+β	L	2,65	2.04	2,38	2.64	2.47	3.1	4.16	2.78 ± 0.69
分布相半衰期T+α	ч	0.26	0.26	0.22	0.38	0.42	0.43	0.37	0.33 ± 0.08
有效浓度维持时间 (Tor(1847)	н	2.6	1.97	2.91	5,23	2.81	3,59	4.67	3.22 ± 1.65
体清除率 (CL,)	ml·kg ⁻¹ ·h ⁻¹ 1265,06	1265.06	1981.67	1206.9	925.26	1289.58	581,40	691,35	1134.46 ± 467.28

3.根据本试验算得产单剂量给药中药代动力学参数推算出多次给 药的 动力 学参数 (见表 3)。

英三 7	

红霉素对奶山羊多次给药的参数

参数	单 位	参数值
消除半衰期Τ-{-β	h	2.78
给药间隔τ	h	6
蓄积因子R		1.26
稳态"平均"血药浓度C∞	μg/ml	1,36
稳态最高血药浓度 (C∞) max	μg/ml	8.78
稳态最低血药浓度 (C∞) min	μg/ml	0.27
剂量D。	mg/kg	8
负荷剂量 D。 *	mg/kg	10.12

讨 论

- 1.结果表明,红霉素在奶山羊体内的配置状态适合开放式二室模型,这与文献报道的奶牛^[4]、黄牛、水牛、马^{[5] [6]}、猪^[7]、狗^[4]的动力学配置状态相同,速度类型也一致。
- 2. 文献记载红霉素在动物和人体内消除半衰期分别是: 奶牛^[4] 3.16—3.6小时; 黄牛1.97小时; 水牛1.5小时,马^[5] [^{0]} 1.0—2.91小时; 猪^[7] 1.2小时; 狗^[4] 1.27小时; 猫^[4] 0.71小时;鸡^[4] 2.5小时;人^[8] 为1.2—1.6小时。可见种属差异很大,是由动物牛理代谢特点所决定。
- 3,药物的表观分布容积(Va)是使体内血药浓度与药量联系起来的一个参数,是体内药量和血药浓度之间的比例常数,标志着药物向血流以外分布的程度。据记载红霉素产畜体内Va比较大^{[5] [6] [7] [8]},马静注12.5mg/kg时,Va为5539ml/kg,黄牛、水牛、猪静注8mg/kg,其Va分别为:1620.38ml/kg、3206.23ml/kg和3260.63ml/kg。本试验给奶山羊静注8mg/kg,Va值为4286.97ml/kg,比上述动物都大。这表明红霉素产体内分布很广,这与红霉素的血浆蛋白结合率很低有关。文献记载^{[10] [14]}红霉素的血浆蛋白结合率为18—40%。据Burrows(1980)报道^[8],由于红霉素的碱性和高脂溶性导致在组织中的浓度高于血清中浓度,此种影响在奶中更为明显,奶中红霉素水平约2倍于同一时间血清中水平,据Bron等^[5]1981年报告红霉素在人肺组织中的水平约为其血清水平的3—5倍。红霉素也能透过人的多核型白细胞(Prokesh和Hand 1982)^[6]。本试验虽未进行组织药浓度的直接测定,但从测得较大的Va值和室间转运速率常数比k₁₂/k₂₁值较大(为1.4974),也可得到旁证。k₁₂/k₂₁>1时说明与血浆蛋白结合率小,药物易从中央室转运到周边室,这也符合上述文献的论点。fc为分布

后相(即消除相)体内药物在中央室的分配率,是一常数,用下式表征: $\mathbf{f_c} = \mathbf{k_{21}} - \boldsymbol{\beta}/\mathbf{k_{21}} - \boldsymbol{\beta} + \mathbf{k_{12}}$ 。本试验中红霉素在奶山羊的 $\mathbf{f_c}$ 值较小(0,2313),此数 据同样对上述报道以侧证。

4. 抗菌素的有效血药浓度, 多根据体外最低抑菌浓度 (MIC) 而 拟定, 红 霉素的 MIC因菌种不同差异很大[2]: 金葡球菌为 $0.19-0.39\mu g/ml$, 肺 炎 双 球 菌 为0.01-0.05μg/ml, 藤黄八春球菌为0.01--0.024μg/ml, 粪链球 菌 为0.05--0.15μg/ml, 破 伤风梭菌为0.39μg/ml。近年来Woolecok和Mutimer (1980) 、Prescott (1981) 的 研究指出对马棒状杆菌的MIC为0.25μg/ml。鉴于0.5μg/ml红霉素一般都 可使 敏感菌 株抑制^[14],故本试验采用0.5μg/ml作为有效血药浓度。据此算得的维持有效血药浓度 时间Tcp(,h.,)为3,22小时,此数据只适用一次给药,若重复给药,则有所延长,因后一 次给药后血浆浓度要比前一次高,而消除速率与体内药量成比例,也会随着药量积累加 快,直达稳定浓度。因此多次给药时不能简单引用Tcr(ther)值 为给药 间 隔 ,要参照 T 🖢 β值综合考虑, Baggot (1981) 提出红霉素给家 畜 用 药 间 隔 以 2 倍 半 衰 期 为 宜[12]。据本试验结果提出奶山羊静注红霉素给药方案:剂量8mg/kg,给药间隔6小 时,据此算得稳态"平均"血药浓度($C\infty$)为1.36 μ g/ml,在理想的治疗水平之间,稳 态最高血药浓度 ((C∞) max为8.78) 并不至引起毒性反应,蓄积因 子为1.26。稳态 最低浓度 (C_{∞}) min为0.27, 也在大部分敏感细菌的MIC以上。固定间隔,固 定 剂量 的药物,需4-6个半衰期达到稳态水平,如首剂量用负荷剂量10.12mg/kg,则可提前 达到稳定水平。

参考文献

- (1) 冯淇辉等主编:《兽医临床药理学》,科学出版社,1983年,60-61页。
- (2) 二宫幾代治主编, 藏广田等译: "家畜的抗菌素与化学疗法》, 科 学 出 版社, 1983年, 11页。
- (3) BP (Vet), 1977, 33-34.
- (4) Baggot, J.D. et al. Res. Vet. Sci, 1976, 21, 318-323.
- (5) J.F. Prescoott, et al. J. Vet. Pharmacol. Therap. 1983, 6 (1), 67-74.
- (6) 李涛等: "给马单剂量静脉注射红霉素后血清中抗生素浓 度的药 动学 分析", 《东北农学院学报》,1983(2),59—63.
- (7) 冯淇辉等, "四环素、红霉素、洁霉素在猪体内代谢动力学的研究", (兽医药理学及毒理学学术讨论会论文摘要汇编), 1984年, 91页。
- (8) Chow, M.S.S., et al. Clin. Pharmacol., 1975, 15, 405.
- (9) Arret, B. et al. J. Pharm. Sci 1971, 60, (15), 1689.
- (10) J.D.Baggot et al. More Rational use of Veterinary Drugs, Massey University 1980, 83-84.
- (11) 曾衍霖: "药物代谢动力学中的二个计算问题——原始数据的权重与线性学模型

中房室数的确定",《药学学报》,1980年,15卷、第9期,574页。

- (12) 戴子英主编:《实用抗菌素学》,上海人民出版社,1977年,241-242页。
- (13) M.吉伯尔迪D.佩里尔著,朱家璧译:《药物动力学》,科学出版社,1981年,第290—295页。
- (14) S.尼兹著, 黄圣凯、陈刚合译:《生物药剂学和临床 药代 动力学》, 南京药学院、南京军区后勤部卫生部出版, 1983年, 第66页。

Pharmacokinetic Study Of Erythromycin in Milk Goats Hu Wenjie Wang jianyuan Liu Qingyu Li Fue Gu Tianji (Northwestern College of Agriculture)

Abstract

Pharmacokinetic process of Erythromycin was studied in seven healthy adult milk goats. Erythromycin was abministrated intravenously at a dose of 8mg/kg of their body weight (single dose). Blood samples were collected at the different times within a 12-hour period after the drug was given. The blood concentration-time curves of the drug were fitted for a two-compartment open mode 1 without the absorption factor. The Pharmacokinetic values and the parameters of multiple dosing of the milk goats are described as follows: C°p9.70g/ml, T+β2.78h, T+α0.33h, K₁₂0.7084h⁻¹, K₂₁0.4938h⁻¹, Vd4.287 L/kg·h, AUC8.17μg·ml⁻¹h⁻¹, Tcp (ther) 3.22h, τ6h, R1.26, C∞1.36μg/ml, D₀·10.12mg/kg.