在第三项系数限制下的Bieberbach猜想:

王 乃 信

(西北农学院基础课部)

摘 要

本文证得: 设f (z) = $z + a_2 z^2 + a_3 z^3 + \cdots + a_n z^n + \cdots \in S$,则当 $|a_3| \le 2.48$ 时,对所有 $n \ge 7$,恒有 $|a_n| < n$,又当 $|a_3| \le 2.6$ 时,存在着绝对常数N,使当n > N 时,恒有 $|a_3| < n$ 。从而改进了目前已知的最好结果。

一、引言

为简便计,本文恒记 b. ⇒ | a. |。

1916年, Bieberbach提出著名的猜想:

若 $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots + a_n z^n + \cdots \in S$,则恒有 $b_n \le n$,当且仅当 f(z) 为k0ebc 函数及其旋转时,全部等号成立。

这一猜想极大地刺激了单叶函数理论的发展。然而,这一猜想至今未被证实。

关于在第三项系数限制下研究Bieberbach猜想的工作,近年来主要进展如下:

1979年,任福尧 $^{(2)}$ 证得。若 $f(z) \in S$,则当 $b_3 \le 1.71$ 时,对所有 $n \ge 7$,恒有 $b_n < n$,又当 $b_3 \le 2.449$ 时,存在着绝对常数N,使当n > N时,恒有 $b_n < n$ 。

1983年,胡克、邓声南、叶中秋 ^[3]证得: 若f (z) ∈S ,则当 b_3 <2.4 时,对 所 有 $n \ge 7$,恒有 b_a <n,又当 b_3 <2.553时,存在着绝对常 数N,使 当n>N 时,恒 有b,<n。

本文旨在改进上述最好的结果。

二、引理

先重述下文要用到的两个已知引理:

引理 1 (胡克⁽³⁾) : 若f (z) ϵ S ,则对任意的自然数n和实数 α (0 $< \alpha < 1$) ,

^{*}本文承蒙任福尧、刘书琴教授多次审阅并提出修改意见,特致衷心谢意。

恒有

$$(\alpha n^2 b_{n+1}^2)^2 \leqslant \beta^2 - \left(\frac{1 + (n-1)\alpha}{1 - \alpha} b_n^2 - \alpha (1 - \alpha) b_2^2 \beta \right)^2 ,$$

其中
$$\beta = \sum_{i=0}^{n-1} \frac{(n-i+i\alpha)^2}{n-i-\alpha} b^2_{i+1}$$
。

引理 2 (FitzGerald ⁽⁴⁾); 若f (z) ∈S,则对任意的自然数n和实数x₁, x₂, ..., 有有

$$\left(\sum_{p=1}^{n} b_{p^{2}x_{p}}\right)^{2} \leqslant \sum_{p=1}^{n} \sum_{g=1}^{n} \left(\sum_{k=1}^{p+g-1} \beta_{k} (p, q) b_{k^{2}}\right) x_{p} x_{q},$$

其 μ $\beta_k(p, q) = \beta_k(q, p)$, 且当 $p \leq q$ 时,

$$\beta_* (p, q) = \frac{1}{2} (p - |k - q| + |(p - |k - q|)|)_0$$

引理结果等价于

$$\sum_{p=1}^{n}\sum_{q=1}^{n}A_{p,q}x_{p}x_{q} \geq 0,$$

其中

$$A_{p,q} = \sum_{k=1}^{p+q-1} \beta_{k}(p, q) b_{k}^{2} - b_{p}^{2} b_{q}^{2},$$

又等价于

$$\begin{pmatrix} A_{1,1} & A_{1,2} \cdots A_{1,n} \\ A_{2,1} & A_{2,2} \cdots A_{2,n} \\ \vdots & \vdots & \vdots \\ A_{n,1} & A_{n,2} \cdots A_{n,n} \end{pmatrix}$$

为半正定实对称方阵。

再建立如下引理:

$$\mathfrak{m}^2 - \mathfrak{b}^2_{\mathbf{m}} \geqslant \epsilon_{\bullet} > 0$$
,

$$\frac{(m^2-b_m^2)^2}{A_m,m} \geqslant p_o > p > 0$$
,

则存在着绝对常数N,使当n>N时,恒有

$$\frac{b_n^2}{n^2} < \frac{7}{6 (1+p)}$$

证: 由引理2知

$$A_{n+1}A_{m+n}-A_{m+n}^{2}>0$$
,

故有

$$b_1^4 \leqslant A_1, + b_n^4 - \frac{A_{n,n}^2}{A_{n,n}}$$

此即

$$b_{*}^{4} \leqslant \sum_{k=1}^{n} k b_{k}^{2} + \sum_{k=n+1}^{2n-1} (2n-k) b_{k}^{2} - \frac{A_{*,*}^{2}}{A_{*,*}}$$

又知当n≥m时,

$$A_{m,k-1} = \sum_{k=1}^{m} k b^{2}_{m-m+k} + \sum_{k=m+1}^{2m-1} (2m-k) b^{2}_{m-m+k} - b_{m}^{2} b_{n}^{2}$$

$$= (m^{2} - b_{m}^{2}) b_{n}^{2} + \sum_{k=1}^{m} k (b^{2}_{m-m+k} - b_{n}^{2}) + \sum_{k=m+1}^{2m-1} (2m-k) (b^{2}_{m-m+k} - b^{2}_{n})_{c}$$

注意到,由叶中秋 [6] 的估计式 $-\lambda_1 = -3.394 < b_{n-1} - b_n < 2.945 = \lambda_2$ 可知,

$$A_{n}$$
, $> (m^{2} - b^{2}_{n})b_{n}^{2} - C_{1} - C_{2}b_{n}$

其中

$$C_1 = \lambda_{1} \lambda_{2} \sum_{k=1}^{m} k (m-k)^{2} + \lambda_{1} \lambda_{2} \sum_{k=m+1}^{2m-k} (2m-k) (k-m)^{2} = 2 \lambda_{1} \lambda_{2} \sum_{k=1}^{m-1} k (m-k)^{2},$$

$$C_{2} = 2\lambda_{1} \sum_{k=1}^{m} k(m-k) + 2\lambda_{2} \sum_{k=m+1}^{2m-1} (2m-k)(k-m) = 2(\lambda_{1} \cdot \lambda_{2}) \sum_{k=1}^{m-1} k(m-k)_{c}$$

易知,当 $\frac{\mathbf{b^2}_{\bullet}}{\mathbf{n^2}} \ge \frac{7}{6(1+\mathbf{p})}$ 时,有绝对常数N。,使对所有 $\mathbf{n} > \mathbf{N}$ 。,恒有

$$A_{m,n} > (m^2 - b_m^2) b_n^2 - C_1 - C_2 b_n > 0$$

已知有l., 使对所有n, 恒 有 $b_n \leq l$.n 。如果l. $e^2 < \frac{7}{6(1+p)}$ 则结论显然成立, 如果

$$l^2 > \frac{7}{6(1+p)}$$
,则当 $n > N_0$ 且 $\frac{b_n^2}{n^2} > \frac{7}{6(1+p)}$ 时,恒有

$$b_{n}^{4} \leq l_{o}^{1} \left(\frac{7}{6} n^{4} - \frac{1}{6} n^{2} \right) - \frac{A^{2}_{n}, a}{A_{n+n}}$$

$$\leq l_{\bullet}^{1} \left(\frac{7}{6} n^{4} - \frac{1}{6} n^{2} \right) - p_{\bullet} \frac{A^{2}_{n,n}}{(m^{2} - b^{3}_{n})^{2}}$$

$$<1.2 \left(\frac{7}{6} n^4 - \frac{1}{6} n^2\right) - p. \left(b_{n^2} - \frac{C_1 + C_2 l.n}{m^2 - b_{m^2}^2}\right)^2, \dots$$

$$\frac{b_{n^4}}{n^4} + p. \left(\frac{b_{n^2}}{n^2} - \frac{C_1 + C_2 l.n}{(m^2 - b_{m^2}^2) n^2}\right)^2 < l.2 \left(\frac{7}{6} - \frac{1}{6 n^2}\right).$$

此式一致地有

$$\lim_{n\to\infty}\frac{b_*^4}{n^4}\leqslant \frac{7l_*^2}{6(1+p_0)}.$$

取定满足 $1+p_{\bullet}=(1+\epsilon)^2(1+p)$ 的 $\epsilon>0$,则有绝对常数 M_i ,使当 $n>M_i$ 时, b_\bullet 或 巳 满足引理结论,或使

$$\frac{b_{\bullet}^{4}}{n^{4}} \leq \frac{7 l_{\bullet}^{2} (1+\epsilon)}{6 (1+p_{\bullet})} = \frac{7 l_{\bullet}^{2}}{6 (1+p) (1+\epsilon)} = l_{1}^{4} < l_{\bullet}^{4}$$

如果 $l_1^2 < \frac{7}{6(1+p)}$, 则结论显然成立, 如果 $l_1^2 > \frac{7}{6(1+p)}$, 则 当 n > 2 M_1 且

$$\frac{b_n^2}{n^2} > \frac{7}{6(1+p)}$$
时,恒有

$$\frac{b_{a}^{4}}{n^{4}} + p_{\bullet} \left(\frac{b_{a}^{2}}{n^{2}} - \frac{C_{1} + C_{2}l_{1}n}{(m^{2} - b_{a}^{2})n^{2}} \right)^{2} < l_{1}^{2} \left(\frac{7}{6} - \frac{1}{6n^{2}} \right) + \frac{1}{4n^{4}} (l_{\bullet}^{2} - l_{1}^{2}) M_{1}^{2} (M_{1} + 1)^{2},$$

此式一致地有

$$\lim_{n\to\infty}\frac{b_{\bullet}^{4}}{n^{4}}\leqslant \frac{7\,l_{1}^{2}}{6\,(1+p_{\bullet})}\,.$$

因而,对于上述 $\epsilon>0$,亦有绝对常数 M_2 ,使当 $n>M_2$ 时, b_* 或已满足引理结 论,或 使

$$\frac{b_1^4}{n^4} \le \frac{7 l_1^2 (1+\epsilon)}{6 (1+p_0)} = \frac{7 l_1^2}{6 (1+p)(1+\epsilon)} = l_2^4 < l_1^4_0$$

重复以上步骤, 得递减正数列 $\{l_k: k=0, 1, 2, \dots\}$,

其中

$$\frac{7 l_{k}^{2}}{6 (1+p)(1+\varepsilon)} = l_{k+1}^{4}.$$

与之对应, 有绝对常数列 $\{M_k: k=0, 1, 2, \cdots\}$, 使当 $n>M_k$ 时, b_k 或已满足引理结论, 或使

$$\frac{b_n^2}{n^2} \leqslant l_1^2,$$

设 {1,} 的极限为1,则

$$l^2 = \frac{7}{6(1+p)(1+p)}$$
°

故有s,使 1^2 。 $<\frac{7}{6(1+p)}$,取N=M,则当n>N 时,恒有

$$\frac{b_{s}^{2}}{n^{2}} < \frac{7}{6(1+p)}$$

e grand and second

引理4: 设f(z) ϵ S。如果对于某个n \geq 7, 有 μ , 和 ρ , 使

$$A_{3,n} \ge (\mu_n + 3 - b_3^2)b_n^2 > \frac{1}{4}(n-1)A_{3,3},$$

$$(\mu_a + 3 - b_a^2)^2 \geqslant p_a A_{a,3}$$

则对该n,有

$$b_{n}^{4} - nb_{n}^{2} - \sum_{k=1}^{n-3} k b_{k}^{2} - \sum_{k=n+3}^{2n-1} (2n-k)b_{k}^{2} - \frac{1}{2}(n-3)(b_{n-2}^{2} + b_{n+2}^{2})$$

$$-\frac{1}{2}(n-1)\mu_{n}b_{n}^{2} + p_{n}b_{n}^{4} \le 0$$

证:由于
$$A_{3,n} = b^2_{n-2} + 2b^2_{n-1} + 3b_n^2 + 2b^2_{n+1} + b^2_{n+2} - b^2_3b_n^2$$
,故知
$$b^2_{n-2} + 2b^2_{n-1} + 2b^2_{n+1} + b^2_{n+2} = A_{3,n} - 3b^2_n + b_3^2b_n^2 \geqslant \mu_n b_n^2.$$

据引理 2,

$$b_n^4 - \sum_{k=1}^n k b_k^2 - \sum_{k=n+1}^{2n-1} (2n-k) b_k^2 + \frac{A_{3,n}^2}{A_{3,3}} \le 0$$

此颐

$$b_{n}^{4} - nb_{n}^{2} - \sum_{k=1}^{n-3} kb_{k}^{2} - \sum_{k=n+3}^{2n-1} (2n-k)b_{k}^{2} - \frac{1}{2}(n-3)(b_{n-2}^{2} + b_{n+2}^{2}) + Q_{n} \leq 0,$$

其中

$$Q_{n} = -\frac{1}{2}(n-1)(b_{n-2}^{2} + 2b_{n-1}^{2} + 2b_{n+1}^{2} + b_{n+2}^{2}) + \frac{A_{3,n}^{2}}{A_{3,3}}$$

由于 Q_n 对($b^2_{n-2} + 2b^2_{n-1} + 2b^2_{n+1} + b^2_{n+2}$)的导数为

$$-\frac{1}{2}(n-1)+\frac{2\mathbf{A_3,a}}{\mathbf{A_{3,3}}}\geqslant -\frac{1}{2}(n-1)+\frac{2}{\mathbf{A_{3,3}}}(\mu_a+3-b_3{}^2)\,b_a{}^2>0\;,$$

故知 Q_n 为 $(b^2_{n-2}+2b^2_{n-1}+2b^2_{n+1}+b^2_{n+2})$ 的增函数。因而,

$$Q_{a} \geqslant -\frac{1}{2} (n-1) \mu_{n} b_{n}^{2} + \frac{1}{A_{3,3}} (\mu_{n} + 3 - b_{3}^{2})^{2} b_{n}^{4}$$

$$\geqslant -\frac{1}{2} (n-1)\mu_{n}b_{n}^{2} + p_{n}b_{n}^{4}$$

从而有

$$\begin{split} b_{\tt a}{}^4 - nb_{\tt a}{}^2 - \sum_{k=1}^{n-3} kb_{\tt k}{}^2 - \sum_{k=n+3}^{2n-1} (2n-k)b_{\tt k}{}^2 - \frac{1}{2}(n-3)(b_{\tt a-2}^2 + b_{\tt a+2}^2) \\ - \frac{1}{2}(n-1)\mu_{\tt a}b_{\tt a}{}^2 + p_{\tt a}b_{\tt a}{}^4 \leqslant 0 \quad . \end{split}$$

引25 岩 $f(z) \in S$ 则对任意的t > 0 ,恒有

$$A_3,_a \ge (9-b_3^2)b_a^2 + tb_a^2 - T(n,t)n^2,$$

其中 T(n,t)>0, 且

$$T^{2}(n,t)n^{4} = t^{2} \left(\sum_{k=1}^{n} kb_{x}^{2} + \sum_{k=n+1}^{2n-1} (2n-k)b_{x}^{2} \right)$$

$$+ t \left(16 \sum_{k=1}^{n} b_{x}^{2} - 4b_{1}^{2} + 4b^{2}_{x+1} \right)$$

$$+ 40 \sum_{k=1}^{n} b_{x}^{2} + 6b_{1}^{2} + 12b_{2}^{2} + 2b_{3}^{2} - 2b^{2}_{x-1} - 20b_{x}^{2} + 2b^{2}_{x+1}$$

$$+ (20 + \frac{32}{t})(\lambda_{1}^{2} + \lambda_{2}^{2}) + \frac{25}{2t}(\lambda_{1} + \lambda_{2})^{2},$$

$$\lambda_{1} = 3.394, \quad \lambda_{2} = 2.945_{o}$$

$$\mathbf{ii}, \dot{\mathbf{i}}, \dot{\mathbf{i}},$$

$$-2tb_{2n-1}^{2}-2tb_{2n+1}^{2}-8tb_{2n}^{2}$$

$$\leq \left(20+\frac{32}{t}\right)\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\frac{25}{2t}\left(\lambda_{1}+\lambda_{2}\right)^{2}.$$

故得引理结论。

特别地, 若有1。>0, 使对所有k, 恒有

则对任意的n≥7和t>0, 恒有

$$T^{2}(n,t)n^{4} \leq \frac{1}{6}l_{\circ}^{2}t^{2}(7n^{4}-n^{2})$$

$$+4l_{\circ}^{2}t\left(\frac{2}{3}n(n+1)(2n+1)+(n+1)^{2}-1\right)$$

$$+4l_{\circ}^{2}\left(\frac{5}{3}n(n+1)(2n+1)-5n^{2}+2n+18\right)$$

$$+\left(20+\frac{32}{t}\right)(\lambda_{1}^{2}+\lambda_{2}^{2})+\frac{25}{2t}(\lambda_{1}+\lambda_{2})^{2}$$

$$\equiv T_{\circ}^{2}(n,t,l_{\bullet})n^{4},$$

其中 $T_{\bullet}(n,t,l_{\bullet}) > 0$ 。从而又有

$$T(n,t) \leq T_{\bullet}(n,t,l_{\bullet})$$

引理 6: 设 0 < t \leq 4, 0 < l。 \leq 1.0657,则以上所定义的 T。(n,t,l。) 为 l。的增函数,又为n的减函数。

证:由于在 $T_{\bullet}^{2}(n,t,l_{\bullet})$ n^{4} 的表达式中, l_{\bullet}^{2} 的系数为正数,故知 $T_{\bullet}(n,t,l_{\bullet})$ 为 l_{\bullet} 的增函数。

又由于

$$T_{o}^{2}(n,t,l_{o}) = \frac{7}{6}l_{o}^{2}t^{2} + \left(\frac{16}{3}l_{o}^{2}t + \frac{40}{3}l_{o}^{2}\right)\frac{1}{n}$$

$$+ \left(-\frac{1}{6}l_{o}^{2}t^{2} + 12l_{o}^{2}t\right)\frac{1}{n^{2}} + \left(\frac{32}{3}l_{o}^{2}t + \frac{44}{3}l_{o}^{2}\right)\frac{1}{n^{3}}$$

$$+ \left(72l_{o}^{2} + \left(20 + \frac{32}{t}\right)(\lambda_{1}^{2} + \lambda_{2}^{2}) + \frac{25}{2t}(\lambda_{1} + \lambda_{2})^{2}\right)\frac{1}{n^{4}},$$

其中 $\frac{1}{n}$, $\frac{1}{n^2}$, $\frac{1}{n^3}$, $\frac{1}{n^4}$ 的系数均为正数, 故知 $T_{\bullet}(n,t,l_{\bullet})$ 为n的减函数。

引理 7. 设 $f(z) \in S$, 且有 $l_o(0 < l_o \le 1.0657)$, 使对所有k, 恒有 $b_k \le l_o k$ 。

(i) 如果有t (09-b_3^2+t-T_0(7,t,l_0)>0,
$$(9-b_3^2+t-T_0(7,t,l_0))^2 \geqslant pA_{3,3}>0$$
,

则对所有n≥7, 恒有

$$b_n < n \not \equiv \frac{b_n^2}{n^2} \leqslant \frac{7}{6(1+p)}.$$

(ii) 如果对某个 $n \ge 7$, 有t (0 < t < 4), 使 $9 - b_3^2 + t - T_{\bullet}(n,t,l_{\bullet}) > 0,$ $(9 - b_3^2 + t - T_{\bullet}(n,t,l_{\bullet}))^2 \ge pA_3, > 0,$

令

$$l_{\bullet}^{2} = \frac{11 + \sqrt{121 + 144 l_{\bullet}^{2} (1 + p)}}{24 (1 + p)},$$

则对所有k≥n, 恒有

$$b_k < k \notin \frac{b_k^2}{k^2} \le 1.2$$

Œ.

(i) 若
$$l_{\bullet}^{2} \le \frac{7}{6(1+p)}$$
或 $l_{\bullet} < 1$,则结论显然成立。故以下设 $l_{\bullet}^{2} > \frac{7}{6(1+p)}$ 且 l_{\bullet}

首先设 $\frac{7}{6(1+p)} \ge 1$ 。由于当 $n \ge 7$ 而 $b_n \ge n$ 时,

$$b_{*}^{4} \leqslant \sum_{k=1}^{n} k b_{k}^{2} + \sum_{k=n+1}^{2n-1} (2n-k) b_{k}^{2} - \frac{A_{3,n}^{2}}{A_{3,n}}$$

$$\leq l.^{2} \left(\frac{7}{6} n^{4} - \frac{1}{6} n^{2} \right) - \frac{A_{3,s}^{2}}{A_{3,3}},$$

$$A_{3,a} \ge (9 - b_3^2) b_a^2 + t b_a^2 - T(n,t) n^2$$

$$\geqslant (9 - b_3^2 + t - T(n, t))b_a^2$$

$$\geqslant (9 - b_3^2 + t - T_o(n, t, l_o))b_a^2$$

$$\gg (9 - b_3^2 + t - T_o(7, t, l_o)) b_a^2$$

从而,

$$\frac{A_{3,n}^{2}}{A_{3,n}} \geqslant pb_{n}^{4},$$

$$(1+p)b_{n}^{4} \leqslant l_{o}^{2} \left(\frac{7}{6}n^{4} - \frac{1}{6}n^{2}\right),$$

故知, 当n≥7而b。≥n时,

$$\frac{b_n^4}{n^4} < \frac{7l_0^2}{6(1+p)} = l_1^4,$$

其中 $l_1>0$ 。容易验证, $l_0^2>l_1^2>\frac{7}{6(1+p)}\geqslant 1$ 。故又知,对所有 $n\geqslant 7$,恒有 $b_a< l_1 n$ 。

重复以上步骤,又得,当n≥7而b。≥n时,

$$\frac{b_{n}^{4}}{n^{4}} < \frac{7l_{1}^{2}}{6(1+p)} = l_{2}^{4},$$

其中 $l_2>0$ 。容易验证, $l_1{}^2>l_2{}^2>\frac{7}{6\;(1+p)}$ $\geqslant 1$ 。故又知,对所有 $n\geqslant 7$,**恒有** $b_n< l_2 n$ 。

依此类推, 得递减正数列 $\{l_r: r=0, 1, 2, \cdots\}$, 其中

$$\frac{71_{r^2}^2}{6(1+p)} = 1^4_{r+1},$$

且对任意的r, 当n≥7时, 恒有b。<l.n。注意到

$$\lim_{r\to\infty}l_r^2=\frac{7}{6(1+p)},$$

因而,对所有n≥7,恒有

$$\frac{b_n^2}{n^2} \leqslant \frac{7}{6(1+p)},$$

其次,当 7/6(1+p) <1时,设l。是{l,}中第一个小于1的项,则当n≥7而b。≥ n时,可得b。<l。n。从而又知,对所有n≥7,恒有b.<n。

(ii) 若 $l_{\bullet}^2 \leq l_{\bullet}^2$ 或 $l_{\bullet} < 1$,则结论显然成立。故以下设 $l_{\bullet}^2 > l_{\bullet}^2$ 且 $l_{\bullet} > 1$ 。

首先设 1.2≥1。当k≥n而b_k≥k时,

$$A_{3,k} \ge (9 - b^{n_{\infty}} + t - T_{\bullet}(n,t,l_{\bullet}))b_{k}^{2},$$

$$\frac{A_{3,k}^{2}}{A_{3,k}} \ge pb_{k}^{4},$$

$$(1+p)b_k^4 \leqslant l_o^2 \left(\frac{7}{6}k^4 - \frac{1}{6}k^2\right),$$

从而,

$$\frac{b_k^4}{k^4} < \frac{7l_0^2}{6(1+p)} = l_1^4$$

其中 $l_1>0$ 。容易验证, $l_0^2>l_1^2>l_0^2\geqslant 1$ 。故又知,对所有 $k\geqslant n$,恒有 $b_1< l_1k$ 。

重复以上步骤,又得,当k≥n而b,≥k时,

$$(1+p)b_{k}^{4} \leq l_{1}^{2} \left(\frac{7}{6}k^{4} - \frac{1}{6}k^{2}\right) + \frac{1}{4}(l_{o}^{2} - l_{1}^{2})n^{2}(n-1)^{2}$$

$$< \left(\frac{11}{12}l_{1}^{2} + \frac{1}{4}l_{o}^{2}\right)k^{4},$$

从而,

$$\frac{b_{k}^{4}}{k^{4}} < \frac{11l_{1}^{2} + 3l_{0}^{2}}{12(1+p)} = l_{2}^{4},$$

其中 $l_2 > 0$ 。容易验证, $l_1^2 > l_2^2 > l_2^2 > 1$ 。故又知,对所有k > n,恒有

$$b_k < l_2 k_o$$

依此类推,得递减正数列 $\{1, : r = 0, 1, 2, \dots \}$, 其中

$$\frac{11l_{r}^{2}+3l_{o}^{2}}{12(1+p)}=l_{r+1}^{4},$$

且对任意的r, 当k≥n时, 恒有b_k<l_rk。注意到

$$\lim_{r\to\infty}l_{r^2}=l_{\bullet^2},$$

因而, 对所有k≥n, 恒有

$$\frac{b_k^2}{k^2} \leqslant l_{\bullet}^2,$$

其次,当 l_*^2 <1时,设 l_* 是 $\{l_*\}$ 中第一个小于1的项,则当 $k \ge n$ 而 $b_* \ge k$ 时, b_* 必小于 l_* k。从而又知,对所有 $k \ge n$,恒有 $b_* < k$ 。

三、定 理

定理1: 设f(z)∈S, 则当

时,存在着绝对常数N。使当n>N时。恒有

证: 首先指出, 若令

$$P_{a+1}^{2}(\alpha,b_{2},b_{3},\cdots,b_{n}) = \beta_{a}^{2} - \left(\frac{1+(n-1)\alpha}{1-\alpha}b_{n}^{2} - \alpha(1-\alpha)b_{2}^{2}\beta_{a}\right)^{2},$$

其中 $P_{a+1}^2(\alpha,b_2,b_3,\cdots,b_n)>0$, $0<\alpha<1$,

$$\beta_{n} = \sum_{i=0}^{n-1} \frac{(n-i+i\alpha)^{2}}{n-i-\alpha} b_{i+1}^{2} = \beta_{n}^{\bullet} + \frac{(1+(n-1)\alpha)^{2}}{1-\alpha} b_{n}^{2},$$

则 $P_{n+1}(\alpha,b_2,b_3,\cdots,b_n)$ 恒为 b_3,\cdots,b_n 的增函数,这是因为,当 $3 \le i+1 \le n-1$ 时,

$$\frac{d}{d(b_{i+1}^2)} P_{n+1}(\alpha, b_2, b_3, \dots, b_n)$$

$$= 2(1 - \alpha^2 (1 - \alpha)^2 b_2^4) \frac{(n - i + i\alpha)^2}{n - i - \alpha} \beta_n$$

$$+ 2\alpha (1 - \alpha) b_2^2 \frac{(n - i + i\alpha)^2}{n - i - \alpha} \frac{1 + (n - 1)\alpha}{1 - \alpha} b_n^2 > 0,$$

$$\frac{d}{d(b_n^2)} P_{n+1}(\alpha, b_2, b_3, \dots, b_n)$$

$$= 2(1 - \alpha^2 (1 - \alpha)^2 b_2^4) \frac{(1 + (n - 1)\alpha)^2}{1 - \alpha} \beta_n^4$$

$$+2((1+(n-1)\alpha)^{2}-(\alpha(1-\alpha)b_{2}^{2}(1+(n-1)\alpha)-1)^{2}]\frac{(1+(n-1)\alpha)^{2}}{(1-\alpha)^{2}}b_{\alpha}^{2}$$

$$+2\alpha(1-\alpha)b_{2}^{2}\frac{1+(n-1)\alpha}{1-\alpha}\beta_{\alpha}^{2}>0,$$

故由引理 1 知, 当 b₃≤B₃, b₄≤B₄, …, b₈≤B₈时

$$b^{2}_{n+1} \leq \frac{1}{\alpha n^{2}} P_{n+1}(\alpha, b_{2}, B_{3}, \dots, B_{n})_{c}$$

已知

$$b_3 \leq 2.6 \equiv B_3$$

由于 $b_2^2 \le b_3 + 1$,又由于Hamilton已证得: 当 $b_2 < 1.8$ 时,存在着绝对常数N,使当n > N时,恒有 $b_0 < n$,故以下设

$$3.24 \le b_2^2 \le 3.6$$

令 α_4 =0.37459, 经验证, $P_4(\alpha_4,b_2,B_3)$, 为 b_2 的减函数, 即当 b_2 = b_2 *=1.8时达到最大值, 故知

$$b_4^2 \le \frac{1}{9\alpha_4} P_4(\alpha_4, b_2^{\bullet}, B_3) = 13.19452 = B_4^2$$

又令 $\alpha_5 = 0.34960$, 注意到

$$A_{3,3} \leq C(b_2) + 3b_3^2 - b_3^4$$

其中

$$C(b_2) = 1 + 2b_2^2 + \frac{2}{9\alpha_4}P_4(\alpha_4, b_2, B_3) + \frac{1}{16\alpha_5}P_5(\alpha_5, b_2, B_3, B_4)$$

经验证, $C(b_2)$ 为 b_2 而减函数、即当 $b_2 = b_2$ = 1.8时达到最大值,故知

$$C(b_2) \leq 1 + 2b_2^{\bullet 2} + \frac{2}{9\alpha_4} P_4(\alpha_4, b_2^{\bullet}, B_3) + \frac{1}{16\alpha_5} P_5(\alpha_5, b_2^{\bullet}, B_3, B_4)$$

= 55.41392= C_8

因而又有

$$A_{3,3} \le C + 3b_3^2 - b_3^4 = h(b_3)_0$$

又注意到

$$\frac{d}{d(b_3^2)} \frac{(9-b_3^2)^2}{h(b_3)} = \frac{9-b_3^2}{h^2(b_3)} (15b_3^2 - 2C - 27) < 0,$$

故知

$$\frac{(9-b_3^2)^2}{A_{3,3}} \geqslant \frac{(9-b_3^2)^2}{h(b_3)} \geqslant \frac{(9-B_3^2)^2}{h(B_3)} = 0.16727 > \frac{1}{6}.$$

从而,由引理 3 (其时m=3) 知,当 $b_3 \le 2.6$ 时,存在着绝对常数N,使当n>N时, 恒有

$$\frac{b_{n}^{2}}{n^{2}} < \frac{7}{6(1+\frac{1}{6})} = 1.$$

证毕。

定理 2: 设f(z) ∈S, 则当

$$b_3 \le 2.48$$

时,对所有n≥7,恒有

$$b_{\bullet} < n_{\circ}$$

证:由于胡克 [3] 已证得: 当 b_3 <2.4时,对所有 $n \ge 7$,恒有 b_a <n,故以下设 $2.4 \le b_3 \le 2.48 \Longrightarrow B_3$ 。

由于 $b_2^2 \le b_3 + 1$,又由于我们已证得: 当 $b_2 \le 1.7$ 时,对所有 $n \ge 7$,恒有 $b_a \le n$,故以下设

$$2.89 \le b_3^2 \le 3.68 = B_2^2$$

令 α^{\bullet} =0.36384, 经验证, $P_{4}(\alpha^{\bullet},b_{2},B_{3})$ 当 $b_{2}=b_{2}^{\bullet}=1.71085$ 时达到最大值, 故知 $b_{4}{}^{2}\leqslant\frac{1}{Q_{\alpha}{}^{\bullet}}P_{4}(\alpha^{\bullet},b_{2}{}^{\bullet},B_{3})=12.38295\Longrightarrow B_{4}{}^{2}.$

又令 $\alpha_4 = 0.37165$, $\alpha_6 = 0.34024$, 经验证,

$$C(b_2) = 1 + 2b_2^2 + \frac{2}{9\alpha_4}P_4(\alpha_4, b_2, B_3) + \frac{1}{16\alpha_5}P_5(\alpha_5, b_2, B_3, B_4)$$

当 $b_2 = b_2$ = 1.76343时达到最大值,故知

$$C(b_2) \leq 1 + 2b_2^{*2} + \frac{1}{9\alpha_4} P_4(\alpha_4, b_2^*, B_3) + \frac{1}{16\alpha_5} P_5(\alpha_5, b_2^*, B_3, B_4)$$

= 52.40546= C_o

因而又有

$$A_{3,3} \le C + 3 b_3^2 - b_3^4 = h(b_3) \le 36.50786$$

以下分三步证明:

(1) 已知有 l_{\bullet} (0 < l_{\bullet} <1.0657),使对所有k, 恒有 b_{k} < l_{\bullet} k。此时,对任意的 t(0 < t<4) 和n(n>7).

$$T(n,t) \leq T_o(n,t,l_o)_o$$

据引理 6 知, $T_{\bullet}(n,t,l_{\bullet})$ 为 l_{\bullet} 的增函数,又为n的减函数。令l=1.0657,则当 $n \geq 7$ 而 b_{\bullet} $\geq n$ 时,

$$A_{3,a} \ge (9 - b_3^2 + t - T(n,t))b_n^2$$

$$\ge (9 - b_3^2 + t - T_0(n,t,l_0))b_{ao}^2$$

$$\ge (9 - b_3^2 + t - T_0(7,t,l))b_{ao}^2$$

若取t=t*=2.09614, 则

$$T_{\bullet}(7,t^{\bullet},1) = 3.30425,$$

从而,当2.4
$$<$$
b₃ $<$ 2.48 $=$ B₃时, $A_{3,n}$ $>$ (9 $-$ b₃²+t $^{\bullet}$ -To(7,t $^{\bullet}$,1))b_n² $>$ (7.79189 $-$ B₃²)n² $>$ 1.64149n² $>\frac{1}{4}$ (n-1)A_{3,30}

由此可知,当 $n \ge 7$ 而 $b_n \ge n$ 时,适当选取 $t(0 < t \le 4)$,总可使共满足引理4和引理7

的条件。例如,选取 $t(0 < t \le 4)$,使 $t - T_0(n,t,l_0)$ 达到最大值即可。最大值的存在是显然的,因为,当 $0 < t \le 4$ 时, $t - T_0(n,t,l_0)$ 为t的连续函数,且

$$\lim_{t\to+0}(t-T_o(n,t,l_o))=-\infty_o$$

(2) 以下恒设

$$1 \le 1 \le 1.0657$$
.

此时,对所有 $n \ge 7$ 和t> 0,

$$T \cdot (n,t,l_0) n^4 > l_0^2 t^2 \left(\frac{7}{6} n^4 - \frac{1}{6} n^2 \right) > t^2 n^4,$$

$$T_0(n,t,l_0) > t_0$$

设对某个 $n \ge 7$,已选取 $t = t_n(o < t_n \le 4)$,使 $9 - B_3^2 + t_n - T_0(n,t_n, l_0) > 0$,则当2.4 $\le b_3 \le 2.48 = B_3$ 时,恒有 $9 - b_3^2 + t_n - T_0(n,t_n,l_0) > 0$ 。令

$$r_a^2 = 9 + t_a - T_a(n_1, t_a, 1_a)$$

则r,2<9, 且

$$_{1}9-b_{3}^{2}+t_{n}-T_{0}(n,t_{n},l_{0}))^{2} \geqslant \frac{(r_{n}^{2}-b_{3}^{2})^{2}}{h(b_{3})}A_{3,3_{0}}$$

容易判定,

$$\frac{(r_{s}^{2}-b_{3}^{2})^{2}}{h(b_{3})} = \frac{(9-b_{3}^{2})^{2}}{h(b_{3})} \left(1-\frac{9-r_{s}^{2}}{9-b_{3}^{2}}\right)^{2}$$

也为b,的减函数,因而,

$$(9-b_3^2+t_n-T_0(n,t_n,l_0))^2 \geqslant \frac{(r_n^2-B_3^2)^2}{h(B_3)}A_{3,30}$$

若已洗取 $t = t_7(0 < t_7 \le 4)$, 使 $r^2 - B^2 > 0$, 令

$$\frac{(r_7^2 - B_3^2)^2}{h(B_3)} = p,$$

则根据引理7之(i),对所有n≥7,恒有

$$b_n < n \not \equiv \frac{b_n^2}{n^2} \le \frac{7}{6(1+p)}$$

今用此法,从 $l_{\bullet}=1.0657$ 开始进行迭代,

1.2	t,	p	$\frac{7}{6(1+p)}$
1.13572	2.09614	0.08158	1.0786699
1.07867	2.37849	0.09021	1.0701334
1.07014	2.43028	0.09163	1,0687383
1.06874	2.43908	0.09187	1.0685060
1.06851	2.44054	0.09191	1.0684677

由此得: 当n≥7时, 恒有

$$\frac{b_{n^2}}{n^2} < 1.06847$$

又若对某个 $n \ge 7$,已选取 $t_*(0 < t_* \le 4)$,使 $t_*^2 - B_3^2 > 0$,令

$$\frac{(r_n^2 - B_3^2)^2}{h(B_3)} = p,$$

则根据引理7之(ii),对所有k≥n,恒有

$$b_{k} < k \text{ is } \frac{b_{k}^{2}}{k^{2}} \leq l^{2} = \frac{11 + \sqrt{121 + 144l^{2}(1+p)}}{24(1+p)}$$

今对1.2=1.06847, n=31, 选取t31=1.13848, 则得

$$p = 0.184836$$
, $l^2 = 0.999276$

由此又知, 当k≥31时, 恒有

 $b_k < k_o$

(3) 假设定理结论不真,则必有满足 $7 \le n \le 30$ 的 n,使 $b_a \ge n$,且当k > n 时,恒有 $b_k \le k$ 。

注意到。当

$$b_k < \begin{cases} l \cdot k & k \leq n, \\ k, & k > n \end{cases}$$

时,对任意的t>0。有

$$T^{2}(n,t) n^{4} < t^{2} \left(\frac{7}{6} \ln^{4} - \frac{1}{6} n^{2} + \frac{1}{4} (l \cdot^{2} - 1) n^{2} (n+1)^{2} \right)$$

$$+ t \left(\frac{8}{3} l \cdot^{2} n (n+1) (2n+1) - 4 l \cdot^{2} + 4 (n+1)^{2} \right)$$

$$+ \frac{20}{3} l \cdot^{2} n (n+1) (2n+1) + 72 l \cdot^{2} - 2 l \cdot^{2} (n-1)^{2} - 20 l \cdot^{2} n^{2}$$

$$+ 2 (n+1)^{2} + (20 + \frac{32}{t}) (\lambda^{2}_{1} + \lambda^{2}_{2}) + \frac{25}{2t} (\lambda_{1} + \lambda_{2})^{2}$$

$$= T_{1}^{2} (n,t,l \cdot) n^{4},$$

其中 $T_1(n,t,l_0) > 0$ 。显然,此时也有

$$T(n,t) < T_1(n,t,l_0)$$

令 $l^2=1.06847$,设对 $n(7\leqslant n\leqslant 30)$ 已选取 $t_*>0$,使当 $2.4\leqslant b_3\leqslant 2.48$ = B_3 时,何有

$$r_n^2 - b_3^2 = 9 - b_3^2 + t_n - T_1(n, t_n, l_n) > \frac{n-1}{4n^2} h(b_3),$$

再令

$$6 + t_n - T_1(n, t_n, l_0) = \mu_n,$$

$$\frac{(r_n^2 - B_3^2)^2}{h(B_3)} = p_n,$$

则当b.≥n时,

$$\begin{split} A_3,_n &\geqslant (r_n{}^2 - b_1{}^2) \, b^2{}_n = (\mu_n + |3| - b_3{}^2) \, b_n{}^2 \\ &> \frac{1}{4} (n-1) \, h \, (b_3) \, \frac{b_n{}^2}{n^2} \geqslant \frac{1}{4} (n-1) \, A_3,_3 \; , \end{split}$$

$$(r_n^2 - b_3^2)^2 = (\mu_n + 3 - b_3^2)^2 \geqslant \frac{(r_n^2 - B_3^2)^2}{h(B_8)} h(b_3) \geqslant p_n A_3,_3,_6$$

故由引理4知, 当b,≥n时,

$$b_{a}^{4} - nb_{a}^{2} - \sum_{k=1}^{n-3} kb_{a}^{2} - \sum_{k=n+3}^{2n-1} (2n-k)b_{k}^{2} - \frac{1}{2}(n-3)(b_{a-2}^{2} + b_{a+2}^{2})$$
$$-\frac{1}{2}(n-1)\mu_{a}b_{a}^{2} + p_{a}b_{a}^{4} \le 0$$

由此式又知

$$(1+p_a)\frac{b_a^4}{n^4} - \left(\frac{1}{n} + \frac{n-1}{2n^2} \mu_a\right) \frac{b_a^2}{n^2} - \left(\frac{2}{3} - \frac{26}{3n^2} + \frac{8}{n^3} - \frac{d}{n^4}\right)$$
$$-\left(\frac{1}{4} - \frac{2}{n} + \frac{23}{4n^2} - \frac{7}{n^3} + \frac{3}{n^4}\right)(1^{2} + 1) < 0,$$

其中

$$d = 1.2(18 + 23 + 33 + 43) - 1 - 2B_2^2 - 3B_3^2 - 4B_4^2 = 30.904$$

这是关于 $\frac{b_n^2}{n^2}$ 的二次不等式,其解形如: $\frac{b_n^2}{n^2}$ < L_n^2 。

当b,≥n时,必有L2>1,从而又必有

$$\begin{split} G(n) &= p_{a} - \left(\frac{1}{4} - \frac{2}{n} + \frac{23}{4n^{2}} - \frac{7}{n^{3}} + \frac{3}{n^{4}}\right) (l^{2} + 1) \\ &+ \frac{1}{3} - \frac{1}{n} + \frac{26}{3n^{2}} - \frac{8}{n^{3}} + \frac{d}{n^{4}} - \frac{n-1}{2n^{2}} \mu_{a} < 0 \ . \end{split}$$

简言之,假设定理结论不真,则必有满足 $7 \le n \le 30$ 的n,使G(n) < 0。

我们对满足7≤n≤30的所有n,分别适当地选取t₂>0,求出相应的μ₂, p₂和G(n):

4, —			·) · · · · · · · · · · · · · · · · · ·	
n	t,	π^{\bullet}	$\mathbf{p}_{\mathtt{n}}$	G(n)
7	2.85131	4.94932	0.09798	0.022626
8	2.61903	5.06927	0.11148	0.010848
9	2.44596	5.15885	0.12213	0.004949
10	2.31023	5.22865	0.13077	0.002065
11	2.19953	5.28480	0.13793	0.000825
12	2.10648	5.33114	0.14398	0.000520
13	2.02645	5.37016	0.14918	0.000762
14	1.95636	5.40356	0.15370	0.001327
15	1.89411	5.43255	0.15768	0.002082
16	1.83819	5.45800	0.16122	0.002946
17	1.78749	5.48055	0.16439	0.003867
18	1.74116	5.50071	0.16724	0.004812
19	1.69857	5.51887	0.16984	0.005762

00			0 15001	0.00000
20	1,65920	5.53532	0.17221	0.006702
21	1.62263	5.55032	0.17438	0.007625
22	1.58852	5.56406	0.17638	0,008524
2 3	1,55659	5.57671	0.17824	0.009398
24	1.52661	5.58839	0.17996	0.010244
25	1,49837	5.59923	0.18156	0.011062
2 6	1.47171	5,60931	0.18306	0.011851
27	1.44649	5.61873	0.18446	0.012613
28	1.42256	5.62754	0.18578	0.013347
29	1.39982	5.63581	0.18702	0.014055
30	1.37817	5.64360	0.18820	0.014738

此结果与假设的推论相矛盾,从而否定假设,确认定理结论。 证毕。

四、附记

上文定理 2 的证明中提及,我们已经证得。设 $f(z) \in S$,则当 $b_2 \le 1.7$ 时,对 所 有 $a \ge 7$,恒有 $b_a \le n$ 。证明摘要如下:

首先, 若对某个n≥7, 有μ_n和p_n, 使

$$\begin{split} A_2,_n \geqslant & (\mu_a + 2 - b_2^2) b_n^2 > \frac{1}{2} (n-1) A_2,_2,\\ & (\mu_a + 2 - b_2^2)^2 \geqslant p_a A_2,_2, \end{split}$$

则可该n,有

$$b_{a}^{4} - nb_{a}^{2} - \sum_{k=1}^{n-2} kb_{k}^{2} - \sum_{k=n+2}^{2n-1} (2n-k)b_{k}^{2} - (n-1)\mu_{a}b_{a}^{2} + p_{a}b_{a}^{4} \leq 0$$

其次,

$$A_{2,2} \leq 1 + 2b_2^2 + B_3^2 - b_2^4 = h(b_2),$$

其中B₃为b₂的函数, 定义为

$$\begin{cases} b_2 = 2(1+\lambda)e^{-\lambda}, \\ B_3 = 2e^{-2\lambda} + 4\lambda(1+\lambda)e^{-2\lambda} + 1, \end{cases} \lambda \geqslant 0.$$

$$T_{\circ}^{2}(n,t,l_{\circ})n^{4} = \frac{1}{6}l_{\circ}^{2}t^{2}(7n^{4}-n^{2}) + \frac{2}{3}l_{\circ}^{2}(t+1)n(n+1)(2n+1)$$
$$+2l_{\circ}^{2}-2l_{\circ}^{2}n^{2} + \lambda_{1}^{2} + \lambda_{2}^{2} + \frac{(\lambda_{1}+\lambda_{2})^{2}}{2t} \circ$$

着有t(0 < t≤2), 使

$$4 - b_3^2 + t - T_{\bullet}(7, t, l_{\bullet}) > 0$$
,
 $(4 - b_3^2 + t - T_{\bullet}(7, t, l_{\bullet}))^2 \ge pA_{2,2} > 0$,

则当n≥7时,

$$b < n \notin \frac{b^2}{n^2} \le \frac{7}{6(1+p)}$$

若对某个 $n \ge 7$, 有t(0 < t ≤ 2), 使

$$4 - b_2^2 + t - T \cdot (n, t, l_1) > 0$$

$$(4-b_2^2+t-T_o(n,t,l_o))^2 \ge pA_2, > 0$$

则当k≥n时,

$$b_k < k \not \equiv \frac{b_k^2}{k^2} \le \frac{11 + \sqrt{121 + 144l_e^2(1+p)}}{24(1+p)}.$$

据此可得: 当 $b_2 \le 1.7$ 时,对所有 $n \ge 7$,恒有 $b_n \le n$ 。这一结论也改进了胡克 ¹³ 的相应结果: 当 $b_2 \le 1.68$ 时,对所有 $n \ge 7$,恒有 $b_n \le n$ 。

参考文献

- [1] Ehrig, G.: Math. Z., 140(1974), 111-126.
- [2] 任福尧:《中国科学》,数学专辑(I)(1979),275-280。
- 〔3〕胡克、邓声南、叶中秋:《科学通报》,28(1983),3:189。
- [4] FitzGerald, C. H.: Arch. Rat. Mech. Anal., 46(1972), 356-368.
- [5] 叶中秋: 《数学研究与评论》, 4(1984), 2:118。

The Bieberbach Conjecture with the Third Coefficient Restricted

Wang Naixin

(Northwestern College of Agriculture)

Abstract

We obtain the following main results:

Let $f(z) = z + a_1 z^2 + a_3 z^3 + \cdots + a_n z^n + \cdots$ be regular and univalent in |z| < 1. If $|a_3| \le 2.48$, then $|a_n| < n$ for all $n \ge 7$. If $|a_3| \le 2.6$, then there exists an absolute constant N such that $|a_n| < n$ for all n > N.

Thus, the best results that we have ever known to date in [3] have been well improved.