种子检验方法标准化的初步探讨

黄先纬

(西北农学院农学系)

一、引言

种子质量检验方法的不同,对获得检验结果的正确与否有重大关系。其中,尤以测定种子发芽力和种子水分,是变动较大的检验项目之一,也是检验方法研究中的重要课题。评价种子的发芽能力有不同的表示方法,一般采用种子在恒温下或变温下作发芽试验,于规定时间内计算发芽粒数。我国农业部颁布的试行标准和一些省、市、自治区企业标准规定,计算小麦发芽势和发芽率的天数相应为发芽后的第三天和第七天,而国际种子检验协会通过的1976年种子检验规程中规定为第四天和第八天。为了探究三天和四天计算发芽势及七天和八天计算发芽率的差异、不同小麦品种发芽势与发芽率之间的关系,以及发芽时幼根、幼芽与籽粒的重量变化。我们用白皮冬小麦和红皮冬小麦品种,分别进行了试验,并按照国际间广泛采用的四唑盐检测脱氢酶活性的染色法,重复验证了发芽力和生活力之间的关系。

此外,为了校验几种水分速测仪器和标准烘箱法之间的误差,用不同水分的两个小 麦品种进行了水分测定。

二、试验材料和方法

1. 发芽势与发芽率的测定

用1979年夏季收获的丰产 3 号(白皮)、矮丰 3 号(白皮)、小偃 5 号(白皮)、郑引 1 号(红皮)和咸农68— 3 (白皮)等五个冬小麦品种,密闭贮存于干燥器中,每隔一月接部颁标准,测定发芽势与发芽率,以六个月的六次重复计算,以后每个月测定一次,共计十二个月。再按国际规程规定采用的沙埋与纸间发芽床,分别测定丰产 3 号与郑引 1 号两个小麦品种的发芽率与发芽势。

2. 测定两个冬小麦品种发芽时,幼根、幼芽和籽粒的重量变化:

用郑引1号和丰产3号两个小麦品种,予先测定含水量,经3、2.5和2毫米筛孔的筛选,区分为大、中、小粒型,分别放在纱布发芽床上进行发芽,到第7天发芽结束时剪取幼根、幼芽和余留籽粒一起,烘干到恒重,分别计算其干重。

^{*}参加工作的还有朱玉权、宋彦毅、吕振武和侯培贤等同志

3. 四唑盐染色测定种子生活力与发芽力

取1979年生产的矮丰 3 号和郑引 1 号两个冬小麦品种,先在水中浸泡一昼夜,取出放在滤纸上,吸去种子表面水分,随机数取30粒,重复 3 次,用锋利刀片沿种胚中心纵切成两半,逐粒对应编号,一半直接发芽;另一半用 1.0% 浓度的四唑盐(四唑盐为北京化工厂生产)染色,观察后再进行发芽,量幼根与幼芽的长度,对比两者的观察结果。

4. 两个小麦品种(丰产 3 号 1 郑引 1 号)种子,用纱布包成小包,放在装有42℃温水的干燥器中,在恒温箱中保持同样温度经 0、24、48、72和96小时后取出,用标准法、红外线、远红外线和电容式水分速测仪,分别测定种子水分,各种方法重复 3 次。

三、试验结果和讨论

1. 发芽势与发芽率之间的关系

从测定五个小麦品种的发芽势与发芽率来看,除矮丰 3 号外,其他品种均有不同程度的休眠期,如第一次测定小偃 5 号、郑引 1 号、矮丰 3 号、丰产 3 号 与 咸 农68— 3 的发芽势与发芽率相应为13、5、75、11、42%与29、17、97、24、86%。随贮存时间加长,发芽势与发芽率相应增加,到第六次测定时,除小偃 5 号外,其他品种均达到了国家标准(试行)规定的二级良种水平。同时,五个小麦品种在不同时间的发芽势与发芽率的差异也极其显著,尤其表现在发芽势上。从下表(表 1)可以看出。故各国政府对种子质量的分级标准,没有发芽势的具体要求,只有发芽率的规定。

品 种	发芽势(%生标准误)	发芽率(%±标准误)
丰产 3 号	66 ± 12.1	81±11.4
矮丰3号	81± 6.8	$97\pm$ 1.1
小偃5号	34± 6.7	68 ± 10.9
郑引1号	37 ± 12.5	65 ± 13.0
咸农68—3	76± 8.4	93± 1.6

表 1 五个小麦品种的发芽势与发芽率

从十二个月测定的五个小麦品种的发芽率来看,五个品种发芽率达到最高峰的时间是不同的,如丰产 3 号为90天,矮丰 3 号为120 天,小偃 5 号为270 天,郑 引 1 号 为270天,咸农68— 3 为120天,高峰过后,发芽率趋向稳定。

2. 两种发芽床中相差1天时,计算的发芽势与发芽率

用丰产 3 号与郑引 1 号两个品种所作第 3 天与第 4 天计算发芽势,第 7 天和第 8 天计算发芽率的对比结果。在两批小麦中无论是纸床与砂床,都是发芽势的差别较大,为 13~28%,而发芽率的差别不 大,为 0.3~2%,未超过规定的允许差距。按国际规程(1976年)规定,平行样品的允许差距,平均发芽率98~99%的样品为 2%,95~97% 者为 3%,91~94% 者为 4%,85~90% 者为 5%(随机取样机率 为 0.025)。

	-1< 4	179	小久叫	4.477511	- Сил Гил —	3 / [* IFQ //X	JAKT	HJ X A			
品种	处	理		第一批 第二批							
		人上	3 天	4天	7天	8天	3 天	4天	7天	8天	
丰产 3 号	纸	床	80	93 -	97	98	97	98	99	99	
十) 3 5	砂	床	61	81	92	93	69	87	96	97	
郑引1号	纸	床	67	18	96	98	64	93	98	99	
F 1 104X	砂	床	54	82	95	96	71	82	93	93	

表 2 两个小麦品种在不同时间与不同发芽床中的发芽率

- 注, 1。 平均每纸床用水70毫升, 砂床用水80毫升。
 - 2。 恒温20±1 °C
 - 3. 每处理重复四次。
 - 3. 两个小麦品种发芽结束时幼根、幼芽和籽粒的重量变化

达到规定计算发芽时间后(第7天)按大、中、小粒型区分的两个小麦品种,其平 均每粒幼根、幼芽和余留籽粒的重量变化见表3。

项 目	郑	引 1	号	丰 产 3 号				
	大	中	小	大	中	小		
籽粒长×宽× 厚(毫米)	5.8×2.9 ×2.75	5.56×2.93 ×2.68	5.52×2.58 ×2.36	5.77 × 3.17 × 2.86	5.49×2.81 ×2.65	4.98×2.50 ×2.32		
千粒重(克)	37.43	32.66	24.23	38.50	33.80	25,67		
发芽率(%)	97.30	97.00	98.70	98.70	97.70	97.30		
幼根干重 (毫克/粒)	4.36	4.09	3.15	5.68	5.50	4.11		
幼芽干重 (毫克/粒)	7.98	7.85	6.85	7.73	7.35	6.49		
余留粒干重 (毫克/粒)	12.55	8.57	4.28	12.61	8.65	6.43		
籽粒干重减轻量 (毫克/粒)	20.75	20.77	17.50	21.04	21.77	16.61		

表 3 小麦幼根、幼芽和籽粒的重量变化

由表内资料可见: (一)籽粒越大,干粒重越重,其幼根、幼芽与余留籽粒的重量 比也越高,到发芽的第7天,大型籽粒几乎还保持有与幼根和幼芽相等的干重,部分营 养物质仍未被耗尽,故小麦素有"胎里富"之称。(二)红皮 \麦的芽重比白皮小麦的 高,而余留籽粒与幼根的干重较白皮小麦的轻,可能是红皮小麦的合成能力比白皮小麦强,这一点有待于继续研究。(三)两个小麦品种的小型籽粒,其发芽率和大、中型籽粒的相差无几,红皮小麦的甚至还比较高。据杜甄斯卡娅认为,小麦小型籽粒中的蛋白质含量高,酶活性强,故发芽率并不降低,但小型籽粒的幼根干重显著较低,以致造成出苗后的吸收能力差,而影响幼苗的生长势,这就说明精选小麦种子的重要性。(四)发芽达第7天时,大型籽粒的幼芽与幼根总干重约等于余留籽粒的干重,而中、小型籽粒的则较大。至于籽粒干重减轻量,大、中型籽粒的接近一致,而小型籽粒的较小。据英每当干物质减少量来计算"。但我们的试验结果,未能证实这种说法。不过,在正常发芽情况下,籽粒干物质减轻越大,合成能力越强,则幼芽的生长势越旺盛,这一点是无可置疑的。(五)经过3、2.5和2毫米筛孔筛下的中型籽粒,对于两个小麦品种按其干粒重来说,比大型籽粒相应轻4.70和4.77克,比小型籽粒重8.13和8.43克,重量相差几乎达一倍。可见,2.5毫米的筛孔,对该两个小麦品种的筛选效果是良好的。筛孔过小,虽然可筛取较大的籽粒,但精选效率差;筛孔过大,则混入小籽粒多,影响种子质量。

4. 四唑盐染色测定生活力和发芽率

用四唑盐染色测定种子的生活力,在国际种子检验协会通过的《国际种子检验规程》(1976年)中,规定可用于麦类。美国农业部颁布的种子检验规程,规定用于农作物、蔬菜和牧草种子。在国内各省、市、自治区《农作物种子标准》中,只见有北京市1978年试行标准中提出,可用作种子发芽率的检验。但依操作技术的熟练和判别染色标准的不同,用四唑盐测定的种子生活率和按常规法测定的发芽率之间,存在显著的差异。从我们用北京市房山县以36个小麦样品(代表31万余斤的自留种)作对比测定的资料,进行统计分析的结果,可以看出(表4)。

样品	四唑盐法	常规法	Σd	Σ d 2	标准	t 值 P = 0.05		
数_	(ΣX ₁ %)	$\%$) $\left(\Sigma X_2 \% \right)$	$\Sigma (\overline{X}_1 - \overline{X}_2)$	2 u	差	实际	表列	
36	2998	2915.5	82.5	724.25	0.65	3.523	2.026	

表 4 用四唑盐法与常规法测定小麦发芽率的统计分析

从我们用四唑盐染色所作的发芽试验来看,凡种胚被染成红色的发芽均好,胚根鞘和胚芽鞘不染色或盾片的上下末端不染色的种胚也能发芽。只有种胚完全不染色或者色 很淡的,不能发芽。胚根的一半以上,胚芽和盾片中部、胚轴、胚上部一半和整个盾片不染色的种胚均不能发芽。这可能是由于切胚位置不正或药液致毒造成的。另外,郑引 1号的切胚,其发芽情况都较差,幼芽和幼根长度亦较短(表 5)。

据我们体会,产生误差的原因有:取样的机误、种子软化时间和温度、割切部位、 观察部位和药液的浓度等。但据美国研究者格雷勃的看法:用染色法检定的生活力与实

品	批	染色部位(粒)					染色后发芽					染色 芽	染色与 不染色	
种	次	根	胚	胚	芽	胚	盾	粒	发芽	根长(毫米	芽长 (毫米	粒	发芽率	发芽相
<i>ላ</i> ቸ _	1/	鞘	根_	轴_	鞘	芽	片	数	率(%)	(電水)	/粒)	数	(%)	差(%)
矮丰	I	2	28	28	5	28	29	29	96.7	2.05	2.0	28	93.3	3.4
矮丰3号	I	21	3 0	30	18	30	22	27	90.0	1.13	0.15	26	86.7	3.3
郑引	I	12	27	27	20	28	23	25	83.3	1.9	1.5	24	80.0	3.3
1 号	I	15	30	30	23	30	13	17	56.7	0.05	0.21	16	53.3	2.4

表 5 两个小麦品种用四唑盐处理与否的发芽情况对比

际发芽率比较,若操作方法正确,其结果通常是接近一致的,3~5%差异,可能完全是由于取样误差所引起的。由于采用四唑盐染色检测种子的生活力,比作发芽试验或其他方法,具有花费时间短、经济简便、不受休眠期的限制以及准确性高等优点,国际间已广泛使用,我国也正在逐步推广。但关于两种方法之间的误差问题,还有待于进一步研究。

5. 五种不同的小麦,用四种不同方法测定的水分结果

为获得不同水分的小麦种子,采用了置于高温高湿条件下的"种子陈化法",然后用经过陈化的种子进行水分测定,结果见表 6。

陈化时间(小时)		丰 产	3 号			郑弓	1 号	-
	远红外	红外线	标准法	BOT-5型	远红外	红外线	标准法	BOT-5型
0	10.22	9.87	10.01	-	10.15	10.15	10.13	_
24	12.63	11.60	11.05	12.83	15.32	13.20	16.28	18.47
48	14.27	13.68	14.43	17.67	15.89	15.07	16.44	18.67
72	16.31	14.83	15.24	19.10	21.94	18.87	21.61	_
96	16.08	15.50	15.70	19.73	24.15	22.48	22.35	

表 6 陈化小麦种子水分测定结果(%)

注。BOT-5型粮食温湿仪为湖北省襄阳地区半导体厂生产,红外线水分快速测定仪,SC69-02型为上海第二天平仪器厂生产,远红外辐射干燥箱(VHW-B),为江苏南通通海仪器厂生产。

可见,两个小麦品种种子用四种测定水分的方法,所测得的结果均有较大的差异(最大达 4.7%),因此,在使用粮食快速水分测定仪时,必须经过和标准法校对,才能获得比较精确的结果。现在市场上销售的多数粮食水分速测仪,由于测定起点低,一般

低于10%的水分便不能测出,在10—16%水分范围内,分度值太大,精确度不够。而西 北地区常年的空气相湿度和温度,使种子发生吸湿平衡的变化常在10%以下,10—16% 的水分是检测种子水分的常见范围,如果精确度不高,不仅影响种子质量分级的误差, 而且会导致贮藏保管中的危险性。

四、结论

- 1. 供试的五个小麦品种均有不同程度的休眠期,小偃 5 号最长,依次为郑引 1 号、咸农68-3、丰产 3 号和矮丰 3 号。发芽势和发芽率的差别,则以郑引 1 号最大,矮丰 3 号最小。休眠期短的小麦,发芽比较整齐一致。
- 2. 无论用纸床或砂床所作小麦相差1天计算的发芽势,其差别较大,发芽率的差别较小,未超过国际规程规定的允许差距。说明我国现在试行的国家标准还是适用的。
- 3. 小麦精选时的筛孔大小,以 2.5 毫米直径为宜。这样, 既能保持适当的筛选效率, 又不致于选入过多的小粒种子。虽然未能证实小麦发芽过程中, 籽粒干物质残留量与幼苗生物合成量相等, 但残留量可反映幼苗的生长势。
- 4. 用四唑盐检测种子的生活力与常规法测定的发芽率之间,存在着显著的差异, 一般是生活力高于发芽率。产生误差的原因,有待进一步研究。
- 5. 现在市售的粮食水分电子速测仪,由于测定的起点低、精确性差,用作种子水 分测定时一定要用标准法来校验。

参考文献

- 1. 北京市农作物种子标准(试行),130~131,1978。
- 2. 北京植物园、北京市种子站,小麦种子生活力的测定,北京人民出版社,220~224,1979。
- 3. 格雷勃, D。F, 著, 颜传启译, 农业种子四唑测定手册, 农业出版社, 1~ **37**, 1979。
- 4. 柯兹米娜著,浙江农大作栽组与种子研究室译,种子学,人民教育出版社, 181~182,1960。
 - 5. 中国农业科学院编,小麦栽培理论与技术,农业出版社,28~29,1979。
 - 6. Crabator E. J., For. Sci., 8, 386-396, 1962.
 - 7. Gordon A. G., Seed Ecology, 391-409, 1976.
 - 8. ISTA, Seed Sci. & Technol., 4. 114-172, 1976.
 - 9. Kotowski, F, Seed Biology, Vol. I, 322, 1972.
 - 10. Vries, F. W., Field Crop Abstr., Vol. 31, 11, 747, 1979
 - 11. Торжинская. Л Р ТР Одесск. Технол. ИНТА. ИМ, И. В. СТАЛИНА, 9, 19—23, 1958.